首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 784 毫秒
1.
采用溶剂热法在200℃制备出形貌均一、分散性较好、平均粒径约200nm的磁性Fe3O4微球。该方法合成的Fe3O4微球在Fenton降解二甲酚橙方面效果显著,降解率达到90%以上。由于Fe3O4微球具有强磁性,故反应后催化剂可直接通过磁铁吸引的方式回收,且回收率可达90%以上。回收后的催化剂只需简单超声清洗便可再生并循环利用,催化剂再生后的降解效果与其一次催化的效果相近。  相似文献   

2.
复杂生物体系中蛋白质的高效分离分析在生物分离、蛋白质纯化与检测等生命科学研究领域中具有重要的意义.本文以磁性荧光复合微球(Fe3O4MNP-ZnSQDs)为载体,利用表面印迹技术在Fe3O4MNP-ZnSQDs表面构建"核-壳"结构的磁性荧光蛋白印迹微球(Fe3O4MNP-ZnSQD@MIPs),并用于溶菌酶蛋白的快速分离.结果表明,制备的Fe3O4MNP-ZnSQD@MIPs具有分散性好、粒径均一、荧光发射强、磁响应明显等特点.在最优条件下,该印迹微球在15 min达到吸附平衡,最大吸附容量可达645.76 m g· g-1,饱和磁强度为40 em u· g-1,且具有良好的选择性,印迹因子为2.15.该磁性荧光分子印迹微球成本低、耗时短、使用简单、吸附量高且选择性好,可用于大批量样品检测中溶菌酶的快速分离与纯化.   相似文献   

3.
首先用水热法制备了Fe3O4纳米球,然后以制备的磁性Fe3O4纳米粒子为磁核,在高温高压反应釜中与葡萄糖反应,使其表面包覆一层聚糖,利用聚糖的还原性,让包覆后的粒子与AgNO3反应,制备出Fe3O4/Ag纳米复合粒子。用透射电镜(TEM)、X射线衍射仪(XRD)对所制备的材料的形貌和结构进行了表征。通过抑菌实验的测定,结果表明Fe3O4/Ag复合材料具有良好的抑菌活性。  相似文献   

4.
以煤矸石为原料,制备出磁性煤矸石地质聚合物(Fe3O4-CGGP),研究了其类芬顿氧化降解苯酚的性能和机制。表征显示,粒径为10~20 nm的Fe3O4均匀分散在煤矸石地质聚合物(CGGP)表面形成Fe3O4-CGGP,Fe3O4-CGGP的饱和磁化强度达到35.68 emu/g,这表明Fe3O4-CGGP具有良好的催化活性和磁响应性能。将其应用于降解苯酚废水,实验探讨了pH值、催化剂投加量、H2O2投加量以及苯酚初始浓度等条件对苯酚降解过程的影响。实验表明:反应最适宜pH值为3.5,催化剂最佳投加量为0.5 g/L,H2O2最佳投加量为10 mmol/L,在最优条件下60 min对苯酚去除率可达到100%.自由基淬灭实验认为在Fe3O4-...  相似文献   

5.
以油酸、聚乙二醇、柠檬酸钠和3-氨丙基三乙氧基硅烷(APTES)为改性剂,采用化学共沉淀法制备4种改性磁性微球.通过粒度测定(PSD)、X射线衍射分析(XRD)、傅里叶红外光谱分析(FTIR)、热重分析(TGA)、磁强度测定(VSM)对各种磁性微球进行表征,并对比各微球固定化铁还原菌后还原Fe(Ⅲ)EDTA的性能,最终确定最佳的磁性微球改性条件.结果表明:APTES改性的Fe3O4磁性微球固定化铁还原菌效果优于其他改性微球,其最佳条件为APTES投加量8 mL,1 mg铁还原菌需1.5 g磁性微球进行固定化;APTES-Fe3O4固定化铁还原菌后连续使用5次,其Fe(Ⅲ)EDTA还原效率仍可保持在90%以上.  相似文献   

6.
采用溶剂热法合成超顺磁性空心亚微球,然后通过正硅酸乙酯水解-聚合反应,在亚微球表面包覆SiO2,形成核壳结构Fe3O4@SiO2空心亚微球。以该Fe3O4@SiO2亚微球为分离介质,实现了大肠杆菌(E. coli)质粒DNA的高效、快速分离。  相似文献   

7.
采用水热法制备了Fe3O4纳米粉体、硅藻土负载纳米Fe3O4二元催化剂(Fe3O4@D),并与BiOBr粉体进行了复合,成功合成了BiOBr/Fe3O4@D复合纳米粉体。采用X射线衍射仪(XRD)、场发射扫描电子显微镜(FESEM)、傅里叶变换红外光谱仪(FTIR)等仪器对3种催化剂进行了表征,并用制得的催化剂光降解罗丹明B(RhB)。结果表明,3种催化剂均被成功合成;在3种催化剂中,Fe3O4粉体呈球状,且BiOBr/Fe3O4@D直径处于纳米级;在光催化降解RhB的试验中,BiOBr/Fe3O4@D复合纳米粉体的催化性能最好。进一步考察了BiOBr/Fe3O4@D三元催化剂的投加量、PMS质量浓度、初始pH等因素对其光催化性能的影响。结...  相似文献   

8.
首先采用工艺较为简单的溶剂热法制备Fe3O4材料,对其进一步修饰后可得到Fe3O4/GO复合材料,最后通过化学共沉淀法制备得到具有磁性的纳米材料Fe3O4/GO/ZnO,并将该材料用于盐酸土霉素的吸附研究中。考察了盐酸土霉素的起始浓度、pH以及吸附剂的用量等因素对盐酸土霉素吸附效果的影响,还考察了纳米材料的再生循环次数及最大吸附量。结果表明:盐酸土霉素起始浓度为18 mg/L,pH值为3,材料用量为0.003 2 g等最佳条件下,该材料的最大吸附量达到191.93 mg/g,前再生3次吸附量保持在150 mg/g左右,故制备的Fe3O4/GO/ZnO磁性纳米材料对盐酸土霉素具有较好的吸附能力和稳定性。  相似文献   

9.
Sch/Fe3O4/ZSM-5复合光催化剂通过化学浸渍法制备,并用于活化H2O2去除甲基橙.通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、高分辨透射电镜(HRTEM)、X射线衍射分析(XRD)、傅里叶变换红外光谱(FT-IR)以及比表面积分析(BET)对Sch/Fe3O4/ZSM-5进行形貌和结构表征.考察了溶液初始pH、H2O2浓度、Sch/Fe3O4/ZSM-5投加量对UV/Sch/Fe3O4/ZSM-5/H2O2体系去除甲基橙的影响.结果表明,当甲基橙初始质量浓度为10 mg·L-1、初始pH为3、H2O2浓度为3 mmol·L-1、Sch/Fe3O...  相似文献   

10.
水相合成磁性Fe3O4纳米颗粒   总被引:1,自引:0,他引:1  
采用化学共沉淀法制备Fe3O4纳米粒子, 选择NH3·H2O作为沉淀剂, 并与Fe2+和Fe3+的混合溶液同时同速滴加到由氨水和硝酸氨组成的缓冲溶液中, 制得了磁性Fe3O4纳米粒子. 考察了磁性纳米粒子合成的一些影响因素, 并用透射电镜(TEM)、 X射线粉末衍射(XRD)、 红外光谱等方法对其性质进行了初步表征.  相似文献   

11.
以乙二醇为溶剂,通过温和的溶剂热法制备了具有不同颗粒尺寸大小的Fe3O4微米粒子.研究发现,通过调节反应体系中水、聚乙二醇-20000和铁离子的浓度,能有效控制Fe3O4的成核与生长,从而能实现对Fe3O4在较大颗粒尺寸范围内的有效调控.另外,相比小尺寸的Fe3O4,较大颗粒尺寸的超顺磁性粒子表现出更优良的磁性回收性能.由此可见,Fe3O4颗粒尺寸的有效调控对拓展其在纳米材料磁性回收中的应用具有非常重要的意义  相似文献   

12.
基于金刚石对顶砧(DAC)上的原位电阻率测量技术, 测量Fe3O4粉末在高压下的电阻率及磁阻率, 得到了样品电阻率随压力的变化关系. 当压力大于或小于6 GPa时, 电阻率随压力的增加均呈下降趋势, 但减小的速率不同; 当压力小于6 GPa时, 样品呈正的磁阻效应; [JP2]当压力大于6 GPa时, 样品呈负的磁阻效应.  结果表明Fe3O4的微观结构在6 GPa发生变化.  相似文献   

13.
使用动态反应釜制备得到磁性粒子,与静态反应釜相比单次制备量提高20倍;通过扫描电子显微镜(SEM)、傅立叶红外光谱(FT-IR)、X射线衍射(XRD)、振动样品磁强计(VSM)等手段对产物进行表征,证明获得了粒径200 nm左右的单分散Fe3O4粒子,并具有超顺磁性;对其表面进行SiO2包覆,获得具有良好分散性的Fe3O4@SiO2粒子。研究发现Fe3O4@SiO2对DNA提取具有可重复利用性,并且质粒DNA吸附到Fe3O4@SiO2上后可直接加入聚合酶链式反应(PCR)体系作为扩增模板。  相似文献   

14.
通过反相微乳液法制备四氧化三铁纳米颗粒(Fe3O4 NPs),并用硅烷偶联剂KH570对其改性,以期在Fe3O4 NPs表面引入C==C双键,再利用引入的C==C双键与三硫代十二烷酸-2-氰基异丙酯(RAFT试剂)进行反应,得到RAFT试剂化的Fe3O4 NPs(Fe3O4-g-KH570-RAFT NPs),并对不同阶段的Fe3O4 NPs产物的结构与形貌等进行表征.研究中以RAFT试剂接枝率(GrRAFT)为指标,考察了反应时间等工艺条件对GrRAFT的影响.结果表明:制备的Fe3O4-g-KH570-RAFT NPs的平均粒径为10.4 nm,当反应时间为14 h,反应温度为65 ℃,nKH570/nRAFT为1/2时,接枝率GrRAFT最高达到79.34%.  相似文献   

15.
以垃圾渗滤液膜滤浓缩液混沉出水为研究对象,制备硅藻土负载纳米Fe3O4作为催化剂催化臭氧处理浓缩液.考察溶液初始pH值、臭氧体积流量和催化剂投加量对处理效率的影响.结果表明:在溶液初始pH值为7,臭氧体积流量为1.0 L·min-1,催化剂投加量为0.8 g·L-1,反应时间为90 min时,化学需氧量(COD)和UV254去除率分别为67.8%和86.3%.对进出水进行三维荧光光谱(3D-EEM)和气相色谱-质谱联用(GC-MS)分析的结果表明:经催化臭氧氧化处理以后,浓缩液中的腐殖酸、富里酸和色氨酸等难降解物质大幅度减少;烷烃类、酚类和杂环类物质质量分数下降,烷烃类衍生物质量分数上升;硅藻土负载纳米Fe3O4催化臭氧对于浓缩液有着较好的处理效果.  相似文献   

16.
为了获得高度取向的阵列材料,以水热合成的纳米Fe3O4磁性颗粒为功能物质,氟碳树脂为薄膜基体,在磁场作用下定向生长成具有磁性针状阵列结构的自组装抗反射薄膜,并考察不同Fe3O4含量对磁性阵列结构的影响;利用体视显微镜和扫描电镜(SEM)对薄膜表面结构进行了表征;采用紫外可见近红外分光光度计(UV/Vis/NIR)来表征自组装薄膜的反射率。结果表明:随着Fe3O4含量的增加,阵列高度逐渐增高;当粉体质量分数为10%时,阵列的间距为300~600μm,阵列中单个针状结构中间的直径约为100μm;薄膜表面的阵列结构对于反射率的降低有明显效果  相似文献   

17.
为了提高玉米秸秆厌氧消化性能,将铁氧化物(Fe2O3,Fe3O4)和活性炭分别添加到玉米秸秆两相厌氧消化系统中的酸化相和甲烷相进行试验。结果表明,在酸化相和甲烷相中分别添加Fe3O4粉末和活性炭粉末(PAC)的试验组效果最佳。Fe3O4粉末添加到酸化相后,挥发性脂肪酸(volatile fatty acids,VFAs)与乙醇的总含量比对照组中两者的总含量提高了25.4%。酸化结束后加入活性炭粉末继续进行甲烷化试验,玉米秸秆累积产甲烷量达到7 965 mL,比对照组提高了27.8%。与对照组相比,添加Fe3O4粉末和活性炭粉末试验组的t80(累积产甲烷量达到总甲烷产量的80%所用的时间)缩短了8 d,电导率提高了33.3%。从微生物群落角度分析,在Fe3O4+PAC试验组中,细菌优势菌属为Clostridium_sensu_stricto_1,古菌优势菌属为Methanobacterium,可以提高H2利用率并且促进厌氧过程中的直接种间电子传递(direct interspecies electron transfer,DIET)。因此,Fe3O4粉末和活性炭粉末的添加可以有效提高玉米秸秆厌氧消化产甲烷潜力。  相似文献   

18.
采用无皂乳液聚合的方法将Fe3O4与温敏性N-异丙基丙烯酰胺-丙烯酰胺共聚物[P(NIPAAm-co-Am)]复合,制备了具有核壳结构的磁性温敏复合微球,并研究了其在60kHz,6.5kA·m-1交变磁场作用下的磁热性能和药物缓释行为.结果表明,所制备的Fe3O4/P(NIPAAm-co-Am)复合微球具有良好的磁热性能,20min内即可使自身温度升高到温敏聚合物的最低临界溶解温度(LCST),约为42°C.复合微球在连续和间歇磁场作用下的药物释放行为显示,间歇性施加磁场能够延长药物的释放周期,而且能够有效增大药物的积累释放量.因具有良好的磁热和药物缓释性能,所制备的聚合物微球有望同步实现肿瘤热疗和化疗药物的可控释放.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号