首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
用Fenton试剂处理磺胺甲恶唑废水,以测定COD值为主要指标,研究了Fe2+的投加量、H2O2投加量、p H值、H2O2投加次数和反应时间等因素对处理磺胺甲恶唑废水的影响.结果表明:对于COD质量浓度为1 166.6mg/L的磺胺甲恶唑模拟制药废水,当Fe2+的投加量为0.2 mol/L,H2O2投加量1.0 mol/L,p H值为3,H2O2投加次数4次,反应时间为60 min的条件下,COD去除率达到最大,为88.9%.说明Fenton高级氧化体系对此类难以生物降解的抗生素制药废水处理的效果很好.  相似文献   

2.
目的研究微波辅助类Fenton体系降解活性艳红X-3B染料废水的处理效果及p H值、催化剂投加量、H_2O_2投加量、微波辐照时间、功率等因素对废水色度和COD去除率的影响.方法制备催化剂,在微波辅助的条件下,控制pH值、H_2O_2投加量、微波功率及辐照时间、催化剂投加量,比对活性艳红X-3B的处理效果.结果初始色度为1 897倍的活性艳红X-3B废水,在催化剂投加质量浓度为10 g/L、初始pH值为3、H_2O_2投加浓度为17.5 mmol/L、微波功率为400 W,辐照时间为8 min的最优条件下,色度去除率最高可以达到99.08%,COD最大去除率达到89.12%.结论微波辅助类Fenton体系能有效处理活性艳红X-3B废水,提高废水的色度去除率和COD去除率,且该类Fenton体系投药量低,适用的pH范围也更广.  相似文献   

3.
Fenton试剂预处理聚酯树脂废水的研究   总被引:1,自引:0,他引:1  
宋艳华  赵硕伟  许晖 《甘肃科技》2009,25(22):61-64
运用Fenton试剂处理工业废水(起始CODC r=60220 mg/L),通过改变H2O2投加量、Fe2+投加量及废水初始pH值等参数,对某聚酯树脂废水进行Fenton试剂氧化正交试验。并在正交试验的基础上进行单因素试验,确定Fenton氧化的最优工艺参数。试验结果表明,在正交试验因素所选的水平中,三个影响因素的大小顺序为:H2O2投加量〉废水初始pH值〉Fe2+投加量。在室温条件下,H2O2/CODC r=2(质量比),[Fe2+]/[H2O2]=1/10(质量比),pH=2.9,反应2h后,废水的CODC r去除率可达74.23%。废水的BOD5/COD值由起使0.352提高至0.582(预处理后),可生化性得到较大提高,有利于后续的生化处理。  相似文献   

4.
采用Fenton氧化技术深度处理青霉素废水,通过单因素试验,研究了pH、H2O2/Fe2+的摩尔比值、H2O2的投加量和反应时间T,4个因素对COD的去除效果及各因素间影响.结果表明:处理废水的最佳条件为废水初始pH为3,H2O2/Fe2+的摩尔比值为1∶1,H2O2的投加量为300 mg/L,反应时间为60 min,此时COD的去除率高达59%左右.在单因素基础上,使用Design Expert软件设计,通过二次回归得到COD去除率与废水的初始pH,H2O2/Fe2+的摩尔比,H2O2的投加量关系的回归模型,该模型能够较好地预测COD的去除率.同时,3个因素对COD去除效果的影响排序为H2O2投加量>H2O2/Fe2+的摩尔比>溶液初始pH,最后得到的优化参数为:pH为2.98,H2O2/Fe2+的摩尔比为0.76∶1,H2O2的浓度为295.10 mg/L,此时COD的去除率为57.415 5%.  相似文献   

5.
微波强化Fenton氧化法处理高浓度医药中间体废水   总被引:2,自引:0,他引:2  
采用微波强化Fenton氧化法处理高浓度医药中间体废水,分别考察初始pH、双氧水(30%)投加量、FeSO4·7H2O投加量、微波功率和反应时间等因素对医药中间体废水处理效果的影响.结果表明:在初始pH为4、双氧水投加量为5mL/L、FeSO4·7H2O投加量为3g/L、微波功率为300W、反应7min的条件下,处理500mL医药中间体废水,其化学耗氧量(COD)去除率达89.7%.反应动力学研究表明,微波强化Fenton氧化法处理医药中间体废水符合一级反应动力学模型,反应半衰期为2.60min.  相似文献   

6.
张燕华  葛建新 《科技信息》2012,(21):242-243
采用Fenton化学氧化法对造纸废水进行深度处理,考察了H2O2和Fe2+浓度、pH、反应时间等因素对COD去除率的影响。在H2O2(3%)投加量为13.33mL/L,FeSO4.7H2O投量为0.9g/L,pH为5,反应15min后静置5min的条件下,初始COD为290mg/L,色度为50倍的造纸生化出水的COD去除率可达到72%。结果表明,Fenton化学氧化法深度处理该废水可以取到很好的效果。  相似文献   

7.
采用Fenton和Fe0-类Fenton氧化反应处理含H酸结晶废母液,基于氧化还原电位(ORP)与铁离子浓度变化规律,对两种体系最佳反应条件下的处理效能进行分析.研究表明:Fenton体系在H2O2投加量为140mmol/L,n(H2O2)∶n(Fe2+)为15∶1,初始pH值为2.0时取得最佳处理效果,此时,化学需氧量(COD)降低率可达79%,总有机碳(TOC)降低率可达50%;而Fe0-类Fenton体系则在H2O2投加量为140mmol/L,Fe0投加量为0.50g/L,溶液初始pH值为1.6时取得最佳处理效果,此时,溶液COD降低率可达73%,TOC降低率可达47%.研究结果表明,以Fe2+作为催化剂处理H酸结晶废母液要比Fe0的处理效果稍好,且氧化剂H2O2的利用效率更高.  相似文献   

8.
Fenton试剂氧化预处理橡胶促进剂生产废水   总被引:6,自引:0,他引:6  
采用Fenton试剂氧化处理橡胶促进剂生产废水.研究H2O2投加量、Fe2 投加量、反应时间及进水浓度对COD去除率的影响,通过实验确定了Fenton试剂处理该废水的最佳操作条件为:Fe2 加入量0.4g.L-1,反应时间20 min,H2O2加入量为18 mL.L-1,pH=3.  相似文献   

9.
本文对Fenton试剂处理焦化废水进行了研究,通过探讨H2O2投加量、[Fe2+]/[H2O2]、pH值、反应时间等因素对COD去除率的影响,确定了以下操作条件:H2O2投加量158mmol/L,[Fe2+]/[H2O2]=1:10,pH=3,反应时间为30min。在上述条件下,焦化废水COD去除率达89.9%。在此基础上,研究了H2O2投加方式对处理效果的影响。结果表明,H2O2采用分批投加时,会改善处理效果。  相似文献   

10.
采用Fenton氧化的方法对湿法腈纶废水二级生化出水进行深度氧化处理.通过单因素实验考察了Fenton试剂投加量、初始pH值及反应时间对该废水处理效果的影响.研究表明,ρH2O2为300mg/L,ρFe2+为300 mg/L,反应初始pH值为3.0,反应时间为120 min时,Fenton氧化反应对COD达到最大去除率57%.另外,通过FT-IR和三维荧光光谱分析探讨了该废水有机污染物在Fenton氧化过程中的去除规律.结果表明,生化出水中某些难降解芳香性物质可以被Fenton试剂氧化分解,废水的可生化性得到提升.  相似文献   

11.
絮凝-芬顿氧化法处理制药污水的研究   总被引:1,自引:0,他引:1  
医药污水COD值高且负荷变化大,含有微生物难降解的成分,是一种难处理的有机污水.经常规工艺处理后,出水有时仍难达标.采用絮凝-芬顿试剂氧化组合工艺法对出水进行处理,通过测定污水的COD变化以评价处理的效果.考察了常温常压下聚合氯化铝、聚丙烯酰胺等絮凝剂对出水预处理的效果,芬顿试剂配比、投加量、pH值等因素对制药污水处理效果的影响,初步发现了其絮凝、氧化规律.经试验确定的最佳工艺条件为:聚合氯化铝量为0.8 mg/L,聚丙烯酰胺的量为6 μg/L,H2O2/Fe2+物质的量的比为3.5∶ 1,FeSO4 *7H2O投加量为1.62 mmol/L,pH=3.0时.处理后COD值从834.4 mg/L降至149.8 mg/L,总去除率可达82.04%.与直接用芬顿试剂氧化相比,絮凝-氧化法具有相同的处理效果,但大大减少了芬顿试剂的使用量,成本节省很多,显示出较大的应用前景.  相似文献   

12.
制药废水是一种难生物降解的高浓度有机工业废水,处理困难.研究以某制药股份有限公司综合排放废水为对象,分别采用Fenton和UV-Fenton法对制药废水进行处理,分析试剂投加量、反应初始pH和反应时间等对反应的影响.结果表明,Fenton法处理制药废水的最佳条件为:FeSO4·7H2O投加0.036 mol/L,H2O2投加0.128 mol/L,初始pH为4.3,反应时间为2 h,CODCr去除率为43.9%. UV-Fenton法处理制药废水缩短反应时间,减少试剂投加量,最佳处理条件为:UV处理时间为7 min,FeSO4·7H2O投加0.029 mol/L,H2O2投加0.102 mol/L,初始pH为4.3,反应时间为75 min,最佳条件下CODCr去除率优于Fenton法,可达63.5%,且污水B/C增至0.39,提高可生化性.  相似文献   

13.
H2O2-Fe2+氧化法处理棉浆泊黑液   总被引:5,自引:1,他引:4  
先用酸析法对棉浆泊黑液进行预处理,然后用H2O2-Fe2+法进行催化氧化.文章研究了H2O2投加量及投加方式、Fe2+投加量、反应时间和pH对处理效果的影响.结果表明在适宜的条件下,废水的COD和色度去除率分别可达94.1%和88%,出水用石灰乳中和后可直接排放.  相似文献   

14.
以河南省某皮革厂二沉池出水为研究对象,研究了类Fenton试剂+催化剂A氧化法对皮革废水的处理效果及影响因素.通过试验,探讨了H2O2与Fe2+两者的投配比、反应时间、PAM的投加量、曝气时间等相关因素对COD去除率的影响.结果表明:2.5%H2O2与10%FeSO4·7H2O的最佳摩尔比是1∶1,最佳投配量分别是9.6mL和22.0mL;0.6%PAM最佳投加量为0.8mL,反应时间为1.5h,曝气时间为10min.经过处理,出水COD控制在80mg·L-1以内,效果显著,达到《污水综合排放标准》(GB8978-1996)皮革废水一级标准.  相似文献   

15.
以载Fe2+颗粒活性炭(GAC)作为催化剂,采用微波增效Fenton试剂氧化工艺处理老龄垃圾渗滤液;以COD和NH3 -N的去除率为指标,分析了Fe2+负载量、GAC用量、微波处理时间、微波处理功率、H2O2用量以及处理液pH值对垃圾渗滤液Fenton氧化处理效果的影响,并进行微观分析及动力学探讨.结果表明:微波可以增强Fenton氧化效果,并促进渗滤液中胶体的絮凝,其中COD主要通过催化氧化作用去除,而NH3-N主要通过絮凝、吸附作用去除;当Fe2+的负载量为33.32 mg/g、GAC用量为10g/L、微波处理功率为720W、微波处理时间为30 min、30%H2O2的用量为0.10 mol/L、溶液初始pH=3时COD和NH3-N的去除率最高,分别达93.01%和85.76%;处理后垃圾渗滤液中有机污染物特征峰消失或大幅减弱,处理效果较好.文中还根据实验结果初步建立了微波增效Fenton试剂氧化反应的动力学模型.  相似文献   

16.
采用UV/Fenton氧化处理难降解腈纶废水,研究了Fe2 和H2O2的投加量、pH值、光照时间、光照强度、有机物的浓度等条件对降解腈纶废水效果的影响.通过实验得出了UV/Fenton试剂氧化处理腈纶废水的最佳反应条件为:原水样pH3,Fe2 浓度为10 mmol·L-1,H2O2浓度为20 mmol·L-1,紫外光照强度为l000W(λ=365nm),光照时间为50min,COD降解率最高达62.77%.  相似文献   

17.
分别采用混凝法和Fenton氧化法对齿轮生产车间脱模剂废水进行预处理,旨在降低其COD浓度,提高其可生化性,为后续生化处理做铺垫.混凝法使用FeCl3、PAC和复合混凝剂进行实验,经各项参数比对得出,在PAC投加量为1 400mg/L,原水pH调至7.0,沉淀时间为40min时,废水的COD去除率最高,可达96.8%.通过Fenton氧化实验得出,在H2O2投加量为6.6g/L,H2O2/Fe2+为10,原水pH调至3.0,反应时间为60min时,处理效果最好,COD去除率为88.4%.可见对于此类废水,在最佳条件下,选用混凝法处理效果更佳.  相似文献   

18.
以活性艳红KD-8B溶液作为模拟印染废水,采用Fenton试剂法对其进行催化降解.考察了体系初始pH值、H2O2和FeSO4的投加量以及反应时间等因素对模拟废水的色度及COD去除率的影响,优化了反应条件.实验确定最佳反应条件为:室温下,pH=2.5,[Fe2+]=3.0 mmol/L,[H2O2]=39.2 mmol/L,反应时间40 min,30 mg/L的模拟染料废水脱色率和COD去除率分别达到96.6%和86.7%.Fenton试剂与厌氧微生物处理相结合的处理方式,可以显著提高模拟废水的色度和COD去除率,均达98%以上,尤其COD的去除率比单纯采用厌氧生物法和Fenton试剂法分别高出34.6%和13.1%.  相似文献   

19.
目的研究非均相UV/Fenton法对活性艳红X-3B染料废水的氧化降解效果,确定非均相UV/Fenton法处理染料废水的工艺条件.方法在自制光反应器中,采用非均相UV/Fenton氧化法对活性艳红X-3B模拟染料废水进行处理,通过试验研究分析H2O2投加量、催化剂投加量、p H值、反应时间等影响因素对非均相UV/Fenton氧化法降解活性艳红X-3B染料废水效果的影响.结果当H2O2投加量为理论投加量,催化剂投加量为1g/L,初始p H=4,常温下反应60 min时,活性艳红X-3B的脱色率和COD的去除率分别达到92.8%和72.3%.结论非均相UV/Fenton氧化法处理活性艳红X-3B染料废水的效果较好,其中H2O2投加量和催化剂投加量对处理效果影响较大.非均相UV/Fenton氧化法拓宽了p H值适用范围.  相似文献   

20.
采用Fenton试剂处理碱性紫染料废水,考察pH值、H2O2和Fe2 投加量、反应温度等对脱色效果的影响.实验结果表明,当碱性紫的初始浓度为50 mg.L-1,反应温度为25℃,pH值为3.0,H2O2投加量为0.5Qth,n(H2O2)∶n(Fe2 )为10∶1的条件下,脱色率可达98%以上.在相同条件下,Fenton试剂对甲基橙和亚甲基蓝染料废水均取得满意的处理效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号