首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 202 毫秒
1.
Mitochondrial DNA (mtDNA) depletion syndrome (MDS; MIM 251880) is a prevalent cause of oxidative phosphorylation disorders characterized by a reduction in mtDNA copy number. The hitherto recognized disease mechanisms alter either mtDNA replication (POLG (ref. 1)) or the salvage pathway of mitochondrial deoxyribonucleosides 5'-triphosphates (dNTPs) for mtDNA synthesis (DGUOK (ref. 2), TK2 (ref. 3) and SUCLA2 (ref. 4)). A last gene, MPV17 (ref. 5), has no known function. Yet the majority of cases remain unexplained. Studying seven cases of profound mtDNA depletion (1-2% residual mtDNA in muscle) in four unrelated families, we have found nonsense, missense and splice-site mutations and in-frame deletions of the RRM2B gene, encoding the cytosolic p53-inducible ribonucleotide reductase small subunit. Accordingly, severe mtDNA depletion was found in various tissues of the Rrm2b-/- mouse. The mtDNA depletion triggered by p53R2 alterations in both human and mouse implies that p53R2 has a crucial role in dNTP supply for mtDNA synthesis.  相似文献   

2.
The p53 protein integrates multiple upstream signals and functions as a tumor suppressor by activating distinct downstream genes. At the cellular level, p53 induces apoptosis, cell cycle arrest and senescence. A rare mutant form of p53 with the amino acid substitution R175P, found in human tumors, is completely defective in initiating apoptosis but still induces cell cycle arrest. To decipher the functional importance of these pathways in spontaneous tumorigenesis, we used homologous recombination to generate mice with mutant p53-R172P (the mouse equivalent of R175P in humans). Mice inheriting two copies of this mutation (Trp53(515C/515C)) escape the early onset of thymic lymphomas that characterize Trp53-null mice. At 7 months of age, 90% of Trp53-null mice had died, but 85% of Trp53(515C/515C) mice were alive and tumor-free, indicating that p53-dependent apoptosis was not required for suppression of early onset of spontaneous tumors. The lymphomas and sarcomas that eventually developed in Trp53(515C/515C) mice retained a diploid chromosome number, in sharp contrast to aneuploidy observed in tumors and cells from Trp53-null mice. The ability of mutant p53-R172P to induce a partial cell cycle arrest and retain chromosome stability are crucial for suppression of early onset tumorigenesis.  相似文献   

3.
In a wide variety of animal species, oocyte maturation is arrested temporarily at prophase of meiosis I (ref. 1). Resumption of meiosis requires activation of cyclin-dependent kinase-1 (CDK1, p34cdc2), one component of maturation-promoting factor (MPF). The dual specificity phosphatases Cdc25a, Cdc25b and Cdc25c are activators of cyclin-dependent kinases; consequently, they are postulated to regulate cell-cycle progression in meiosis and mitosis as well as the DNA-damage response. We generated Cdc25b-deficient (Cdc25b-/-) mice and found that they are viable. As compared with wildtype cells, fibroblasts from Cdc25b-/- mice grew vigorously in culture and arrested normally in response to DNA damage. Female Cdc25b-/- mice were sterile, and Cdc25b-/- oocytes remained arrested at prophase with low MPF activity. Microinjection of wildtype Cdc25b mRNA into Cdc25b-/- oocytes caused activation of MPF and resumption of meiosis. Thus, Cdc25b-/- female mice are sterile because of permanent meiotic arrest resulting from the inability to activate MPF. Cdc25b is therefore essential for meiotic resumption in female mice. Mice lacking Cdc25b provide the first genetic model for studying the mechanisms regulating prophase arrest in vertebrates.  相似文献   

4.
5.
Modulation of tumor suppressor activities may provide new opportunities for cancer therapy. Here we show that disruption of the gene Ppm1d encoding Wip1 phosphatase activated the p53 and p16 (also called Ink4a)-p19 (also called ARF) pathways through p38 MAPK signaling and suppressed in vitro transformation of mouse embryo fibroblasts (MEFs) by oncogenes. Disruption of the gene Cdkn2a (encoding p16 and p19), but not of Trp53 (encoding p53), reconstituted cell transformation in Ppm1d-null MEFs. In vivo, deletion of Ppm1d in mice bearing mouse mammary tumor virus (MMTV) promoter-driven oncogenes Erbb2 (also called c-neu) or Hras1 impaired mammary carcinogenesis, whereas reduced expression of p16 and p19 by methylation-induced silencing or inactivation of p38 MAPK correlated with tumor appearance. We conclude that inactivation or depletion of the Wip1 phosphatase with resultant p38 MAPK activation suppresses tumor appearance by modulating the Cdkn2a tumor-suppressor locus.  相似文献   

6.
Expression of oncogenic Ras in primary human cells activates p53, thereby protecting cells from transformation. We show that in Ras-expressing IMR-90 cells, p53 is phosphorylated at Ser33 and Ser46 by the p38 mitogen-activated protein kinase (MAPK). Activity of p38 MAPK is regulated by the p53-inducible phosphatase PPM1D, creating a potential feedback loop. Expression of oncogenic Ras suppresses PPM1D mRNA induction, leaving p53 phosphorylated at Ser33 and Ser46 and in an active state. Retrovirus-mediated overexpression of PPM1D reduced p53 phosphorylation at these sites, abrogated Ras-induced apoptosis and partially rescued cells from cell-cycle arrest. Inactivation of p38 MAPK (the product of Mapk14) in vivo by gene targeting or by PPM1D overexpression expedited tumor formation after injection of mouse embryo fibroblasts (MEFs) expressing E1A+Ras into nude mice. The gene encoding PPM1D (PPM1D, at 17q22/q23) is amplified in human breast-tumor cell lines and in approximately 11% of primary breast tumors, most of which harbor wildtype p53. These findings suggest that inactivation of the p38 MAPK through PPM1D overexpression resulting from PPM1D amplification contributes to the development of human cancers by suppressing p53 activation.  相似文献   

7.
8.
9.
10.
Telomere shortening limits the proliferative lifespan of human cells by activation of DNA damage pathways, including upregulation of the cell cycle inhibitor p21 (encoded by Cdkn1a, also known as Cip1 and Waf1)) (refs. 1-5). Telomere shortening in response to mutation of the gene encoding telomerase is associated with impaired organ maintenance and shortened lifespan in humans and in mice. The in vivo function of p21 in the context of telomere dysfunction is unknown. Here we show that deletion of p21 prolongs the lifespan of telomerase-deficient mice with dysfunctional telomeres. p21 deletion improved hematolymphopoiesis and the maintenance of intestinal epithelia without rescuing telomere function. Moreover, deletion of p21 rescued proliferation of intestinal progenitor cells and improved the repopulation capacity and self-renewal of hematopoietic stem cells from mice with dysfunctional telomeres. In these mice, apoptotic responses remained intact, and p21 deletion did not accelerate chromosomal instability or cancer formation. This study provides experimental evidence that telomere dysfunction induces p21-dependent checkpoints in vivo that can limit longevity at the organismal level.  相似文献   

11.
N-methyl-D-aspartate (NMDA) receptors mediate excitatory neurotransmission in the mammalian brain. Two glycine-binding NR1 subunits and two glutamate-binding NR2 subunits each form highly Ca2(+)-permeable cation channels which are blocked by extracellular Mg2(+) in a voltage-dependent manner. Either GRIN2B or GRIN2A, encoding the NMDA receptor subunits NR2B and NR2A, was found to be disrupted by chromosome translocation breakpoints in individuals with mental retardation and/or epilepsy. Sequencing of GRIN2B in 468 individuals with mental retardation revealed four de novo mutations: a frameshift, a missense and two splice-site mutations. In another cohort of 127 individuals with idiopathic epilepsy and/or mental retardation, we discovered a GRIN2A nonsense mutation in a three-generation family. In a girl with early-onset epileptic encephalopathy, we identified the de novo GRIN2A mutation c.1845C>A predicting the amino acid substitution p.N615K. Analysis of NR1-NR2A(N615K) (NR2A subunit with the p.N615K alteration) receptor currents revealed a loss of the Mg2(+) block and a decrease in Ca2(+) permeability. Our findings suggest that disturbances in the neuronal electrophysiological balance during development result in variable neurological phenotypes depending on which NR2 subunit of NMDA receptors is affected.  相似文献   

12.
13.
Pten and p27KIP1 cooperate in prostate cancer tumor suppression in the mouse   总被引:23,自引:0,他引:23  
The genetic bases underlying prostate tumorigenesis are poorly understood. Inactivation of the tumor-suppressor gene PTEN and lack of p27(KIP1) expression have been detected in most advanced prostate cancers. But mice deficient for Cdkn1b (encoding p27(Kip1)) do not develop prostate cancer. PTEN activity leads to the induction of p27(KIP1) expression, which in turn can negatively regulate the transition through the cell cycle. Thus, the inactivation of p27(KIP1) may be epistatic to PTEN in the control of the cell cycle. Here we show that the concomitant inactivation of one Pten allele and one or both Cdkn1b alleles accelerates spontaneous neoplastic transformation and incidence of tumors of various histological origins. Cell proliferation, but not cell survival, is increased in Pten(+/-)/Cdkn1b(-/-) mice. Moreover, Pten(+/-)/Cdkn1b(-/-) mice develop prostate carcinoma at complete penetrance within three months from birth. These cancers recapitulate the natural history and pathological features of human prostate cancer. Our findings reveal the crucial relevance of the combined tumor-suppressive activity of Pten and p27(Kip1) through the control of cell-cycle progression.  相似文献   

14.
The functional interaction of BAFF and APRIL with TNF receptor superfamily members BAFFR, TACI and BCMA is crucial for development and maintenance of humoral immunity in mice and humans. Using a candidate gene approach, we identified homozygous and heterozygous mutations in TNFRSF13B, encoding TACI, in 13 individuals with common variable immunodeficiency. Homozygosity with respect to mutations causing the amino acid substitutions S144X and C104R abrogated APRIL binding and resulted in loss of TACI function, as evidenced by impaired proliferative response to IgM-APRIL costimulation and defective class switch recombination induced by IL-10 and APRIL or BAFF. Family members heterozygous with respect to the C104R mutation and individuals with sporadic common variable immunodeficiency who were heterozygous with respect to the amino acid substitutions A181E, S194X and R202H had humoral immunodeficiency. Although signs of autoimmunity and lymphoproliferation are evident, the human phenotype differs from that of the Tnfrsf13b-/- mouse model.  相似文献   

15.
Cardiac defects and renal failure in mice with targeted mutations in Pkd2   总被引:13,自引:0,他引:13  
PKD2, mutations in which cause autosomal dominant polycystic kidney disease (ADPKD), encodes an integral membrane glycoprotein with similarity to calcium channel subunits. We induced two mutations in the mouse homologue Pkd2 (ref.4): an unstable allele (WS25; hereafter denoted Pkd2WS25) that can undergo homologous-recombination-based somatic rearrangement to form a null allele; and a true null mutation (WS183; hereafter denoted Pkd2-). We examined these mutations to understand the function of polycystin-2, the protein product of Pkd2, and to provide evidence that kidney and liver cyst formation associated with Pkd2 deficiency occurs by a two-hit mechanism. Pkd2-/- mice die in utero between embryonic day (E) 13.5 and parturition. They have structural defects in cardiac septation and cyst formation in maturing nephrons and pancreatic ducts. Pancreatic ductal cysts also occur in adult Pkd2WS25/- mice, suggesting that this clinical manifestation of ADPKD also occurs by a two-hit mechanism. As in human ADPKD, formation of kidney cysts in adult Pkd2WS25/- mice is associated with renal failure and early death (median survival, 65 weeks versus 94 weeks for controls). Adult Pkd2+/- mice have intermediate survival in the absence of cystic disease or renal failure, providing the first indication of a deleterious effect of haploinsufficiency at Pkd2on long-term survival. Our studies advance our understanding of the function of polycystin-2 in development and our mouse models recapitulate the complex human ADPKD phenotype.  相似文献   

16.
17.
Fraser syndrome is a recessive, multisystem disorder presenting with cryptophthalmos, syndactyly and renal defects and associated with loss-of-function mutations of the extracellular matrix protein FRAS1. Fras1 mutant mice have a blebbed phenotype characterized by intrauterine epithelial fragility generating serous and, later, hemorrhagic blisters. The myelencephalic blebs (my) strain has a similar phenotype. We mapped my to Frem2, a gene related to Fras1 and Frem1, and showed that a Frem2 gene-trap mutation was allelic to my. Expression of Frem2 in adult kidneys correlated with cyst formation in my homozygotes, indicating that the gene is required for maintaining the differentiated state of renal epithelia. Two individuals with Fraser syndrome were homozygous with respect to the same missense mutation of FREM2, confirming genetic heterogeneity. This is the only missense mutation reported in any blebbing mutant or individual with Fraser syndrome, suggesting that calcium binding in the CALXbeta-cadherin motif is important for normal functioning of FREM2.  相似文献   

18.
The polo-like kinase Plk4 (also called Sak) is required for late mitotic progression, cell survival and postgastrulation embryonic development. Here we identified a phenotype resulting from Plk4 haploinsufficiency in Plk4 heterozygous cells and mice. Plk4+/- embryonic fibroblasts had increased centrosomal amplification, multipolar spindle formation and aneuploidy compared with wild-type cells. The incidence of spontaneous liver and lung cancers was approximately 15 times high in elderly Plk4+/- mice than in Plk4+/+ littermates. Using the in vivo model of partial hepatectomy to induce synchronous cell cycle entry, we determined that the precise regulation of cyclins D1, E and B1 and of Cdk1 was impaired in Plk4+/- regenerating liver, and p53 activation and p21 and BubR1 expression were suppressed. These defects were associated with progressive cell cycle delays, increased spindle irregularities and accelerated hepatocellular carcinogenesis in Plk4+/- mice. Loss of heterozygosity occurs frequently (approximately 60%) at polymorphic markers adjacent to the PLK4 locus in human hepatoma. Reduced Plk4 gene dosage increases the probability of mitotic errors and cancer development.  相似文献   

19.
Wolcott-Rallison syndrome (WRS) is a rare, autosomal recessive disorder characterized by permanent neonatal or early infancy insulin-dependent diabetes. Epiphyseal dysplasia, osteoporosis and growth retardation occur at a later age. Other frequent multisystemic manifestations include hepatic and renal dysfunction, mental retardation and cardiovascular abnormalities. On the basis of two consanguineous families, we mapped WRS to a region of less than 3 cM on chromosome 2p12, with maximal evidence of linkage and homozygosity at 4 microsatellite markers within an interval of approximately 1 cM. The gene encoding the eukaryotic translation initiation factor 2-alpha kinase 3 (EIF2AK3) resides in this interval; thus we explored it as a candidate. We identified distinct mutations of EIF2AK3 that segregated with the disorder in each of the families. The first mutation produces a truncated protein in which the entire catalytic domain is missing. The other changes an amino acid, located in the catalytic domain of the protein, that is highly conserved among kinases from the same subfamily. Our results provide evidence for the role of EIF2AK3 in WRS. The identification of this gene may provide insight into the understanding of the more common forms of diabetes and other pathologic manifestations of WRS.  相似文献   

20.
The tumor suppressor p53, one of the most intensely investigated proteins, is usually studied by experiments that are averaged over cell populations, potentially masking the dynamic behavior in individual cells. We present a system for following, in individual living cells, the dynamics of p53 and its negative regulator Mdm2 (refs. 1,4-7): this system uses functional p53-CFP and Mdm2-YFP fusion proteins and time-lapse fluorescence microscopy. We found that p53 was expressed in a series of discrete pulses after DNA damage. Genetically identical cells had different numbers of pulses: zero, one, two or more. The mean height and duration of each pulse were fixed and did not depend on the amount of DNA damage. The mean number of pulses, however, increased with DNA damage. This approach can be used to study other signaling systems and suggests that the p53-Mdm2 feedback loop generates a 'digital' clock that releases well-timed quanta of p53 until damage is repaired or the cell dies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号