首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
棉花纤维品质功能基因组学研究与分子改良研究进展   总被引:3,自引:0,他引:3  
本项目基于基因组学、功能基因组学、蛋白质组学和生物信息学等多学科交叉研究了棉花纤维品质发育的分子机制:利用辐射诱变、杂交、回交、系谱选择等技术培育、挖掘出优异纤维资源384份;利用徐州142棉纤维无长绒、无短绒突变体筛选出纤维伸长相关基因;用体外培养方法验证了乙烯、油菜素(BR)的生物合成途径及部分次生物质在纤维生长过程中的作用;构建了海岛棉品种Pi-ma90-53和陆地棉7235的BAC文库;利用蛋白质组学研究了棉纤维发育过程中的一些重要蛋白质的变化,构建了棉纤维细胞蛋白质表达谱;利用抑制扣除杂交方法、基因芯片技术或从纤维cDNA文库中筛选等共获得棉纤维发育相关基因199个,并用模式系统和棉花对基因的功能进行了分析和验证;建立了高效农杆菌介导、花粉管通道、基因枪轰击3种规模化的快速基因功能验证技术体系;开发了新标记,构建了陆海、陆陆高密度分子标记遗传连锁图谱,并选择有用分子标记和生化辅助育种相结合,初步建立了棉花纤维品质分子改良育种体系。  相似文献   

2.
赤霉素通过促进细胞分裂调控树木生长发育,但有关赤霉素对于木材品质性状影响的研究报道较少。利用木质部特异表达的糖基转移酶8D1(GT8D1)启动子驱动GA20ox基因的表达,可以改良木材品质性状和纸张性能。实验构建GT8D1启动子驱动GA20ox基因在杨树中过表达获得转基因杨树,并在温室中扦插后得到转基因株系供试。取两年生转基因植株,分析木质素、纤维素等组分含量及其木材结构变化。结果表明,在GT8D1启动子驱动下,GA20ox基因的过表达加速了杨树转基因植株赤霉素的合成,刺激了形成层细胞分裂和树木的生长,有利于转基因植株的木材物质积累。转基因株系的木质素中紫丁香基单体(S)与愈创木基单体(G)的比值显著提高。通过TEMPO氧化法制备纳米纤维素,发现转基因杨树样本的纳米纤维素直径显著增加。以漂白松木浆为基础,分别添加5%浓度的转基因和非转基因材料制备的纳米纤维素进行纸张性能测试。分析显示,与对照组相比,转基因纳米纤维素(GM-nanocellulose)纸样纸张抗拉强度和耐破强度提升显著增多。研究结论为利用现代遗传工程技术改良制浆造纸原料物理性质和化学组分,优化制浆造纸新工艺,发展绿色、低...  相似文献   

3.
木质纤维素是地球上数量最大的可再生资源,由木质素、半纤维素及纤维素三者紧密结合产生的抗降解屏障作用是纤维素能源利用的主要障碍。通过调控木质素生物合成途径关键基因的表达来降低杨树木质素含量或改变木质素成分,是提高杨木纤维素转化效率并降低转化成本的有效途径。通过选定木质素合成基因作为调控目标,运用RNAi抑制技术调控木质素的生物合成,转化获得转基因植株是一条可行的途径。同时建立并开发更合理的木质素提取方法,得到纯度得率更高的木质素,结合多维核磁共振等分析手段对转基因杨树组分的成分结构变化进行深入地解析,追踪基因工程对杨木材性的改良效果,进一步为木质纤维素高效利用以及生物质能源型杨树的遗传育种研究开拓新思路。  相似文献   

4.
《中国科技成果》2011,12(6):58-59
胃癌是我国发病人数和死亡人数最高的恶性肿瘤之一.由于西方该病少见,可借鉴的经验不多,我们必须开展自主研究胃癌变过程中的分子机制从而解决胃癌的根本问题.本课题组已进行了16年的胃癌发病机制和防治的系统研究.研究内容包括:胃幽门螺杆菌感染所致胃癌机制和清除幽门螺杆菌对预防胃癌的价值;胃癌前病变到胃癌变过程中的基因异常和表观遗传学异常;胃癌关键分子的基因结构及表达调控异常;胃癌发生发展过程中的生物学行为及其相关的易感基因群及其相互作用网络.  相似文献   

5.
《中国基础科学》2012,(4):36-36
对于复杂的多细胞真核生物如动物和植物,水平基因转移一般被认为非常罕见,因而在进化上意义非常有限。中国科学院昆明植物研究所孙航研究小组与美国东卡罗莱纳大学黄锦岭(通讯作者)等合作研究显示,水平基因转移在陆地植物早期演化中频繁发生。他们通过对小立碗藓基因组进行分析,鉴别出了57个核基因家族,它们来源于原核生物,如真菌或病毒。这些基因家族中有很多转移到绿色或陆地植物的祖先基因组中。这些很早就获得的基因在一些基本的植物特异的功能中发挥了作用,如木质部形成、植物防御、氮循环以及淀粉、多胺、植物激素和谷胱甘肽等的生物合成等。这些发现显示,水平转移基因在植  相似文献   

6.
从1983年转基因烟草的问世,到1996年转基因作物全球的商业化种植,基因工程为多个领域尤其是食品领域带来了深刻的技术革命。转基因生物是利用现代分子生物技术,将某些生物的基因转移到其他物种中去,改造生物的遗传物质,使其在形状、营养品质、消费品质等方面向人们所需要的目标转变。以转基因生物为直接食品或为原料加工生产的食品就是"转基因食品",包括转基因植物食品、转基因动物食品和转基因微生物食品。转基因技术可用来改变植物的某些遗传特性,培育高产、优质、抗病毒、抗虫、抗寒、抗旱、抗涝、抗盐碱、抗除草剂等的作物新品种;  相似文献   

7.
王国卿  童建 《中国科技成果》2009,10(10):17-20,23
在中枢核团、外周细胞、整体行为、细胞信使和基因表达等不同水平上,较系统地开展了对生物钟的结构和功能的解析工作,继而深入探讨生物节律的内在控时机理。主要内容是(1)采用电生理、行为测定、形态学观察、生化检测和cAMP/cGMP及其相关酶分子昼夜活性测定等多种方法,探讨了中缝背核(DR)对视交叉上核(SCN)昼夜节律的调节机制。(2)围绕中枢核心钟组织SCN和松果体(PG),观察了PG释放的第一信使褪黑素(MT),作用SCN上不同MT受体亚型→调制SCN昼夜节律性放电、引起SCN中第二信使cAMP、cGMP、Ca^2+和核内第三信使c-fos改变,检测各个信使昼夜节律性含量变化及其代谢调控的生物节律;探讨SCN和PG在昼夜活动度、体温调节功能上的差异;同时将cAMP/cGMP的周期性变化与细胞分裂的昼夜节律相联系,通过多种节律间的参数关系和位相性调控比较,在细胞水平上解析生物节律性活动的振荡特征、SON与PG间的跨膜信号转导及其对昼夜节律的调控机制。(3)研究昼夜模型动物中枢核团(SCN、PG)和外周血淋巴细胞的核心钟基因、钟相关基因和钟控基因在昼夜节律调控中的作用,明确在中枢生物钟系统中,SCN和PG的昼夜基因表达特征及其相互关系。同时,通过筛选和鉴定钟基因下游的目的基因,寻找中枢和外周组织中能够特征性表达或者共表达的钟控基因,从而为在分子水平上阐明中枢和外周昼夜节律生物钟间的机制性联系,提供实验依据。  相似文献   

8.
国家863计划课题“小尾寒羊高繁殖力分子标记的研究”由中国农业科学院畜牧研究所主持。本课题采用候选基因方法,重点研究在卵巢中表达的基因,寻找我国独特遗传资源——小尾寒羊和湖羊高繁殖力的分子遗传标记。  相似文献   

9.
"植物激素作用的分子机理"在国家自然科学基金委员会"十一五"第一批重大研究计划的中期评估中获得了优秀,为了进一步探索管理模式,提高重大研究计划的成效,本文对该计划在执行过程中管理方面的一些做法进行了总结,认为职责清晰、统筹安排、深入调研、有序调整、双重把关、滚动管理等做法是该计划在前一阶段能够得以顺利实施并取得重要进展的关键。  相似文献   

10.
随着国际上动物转基因前沿领域技术的发展,上海出现了全国第一家转基因鸡产业开发公司,并率先开发出鸡蛋蛋清表达外源基因的技术。技术鉴定专家说,这一接近国际水平的转基因鸡技术的主要成果在于:构建了能在鸡蛋蛋清中表  相似文献   

11.
《中国基础科学》2012,(4):44-44
中国农业科学院棉花研究所棉花生物学国家重点实验室喻树迅研究组、华大基因研究院王俊研究组和北京大学蛋白质工程与植物基因工程国家重点实验室朱玉贤研究组等合作,完成对二倍体棉花雷蒙德氏棉基因组测序,并组装出其基因组草图。超过73%的组装序列被锚定在雷蒙德氏棉的13条染色体上。基因组包括了40976个蛋白质编码基因,其中92.2%得到了转录组学数据的证实。  相似文献   

12.
对分子科学和分子技术的发展简况、研究内容及其相互关系进行了初步讨论,指出在发展分子科学研究的同时必须注意加强相应的技术发展.这将对促进分子科学的发展及推动分子科学为国民经济服务是十分重要的.  相似文献   

13.
《中国科技成果》2014,(13):29-29
猪和鸡的生产在我国畜牧生产中占有70%以上的比例,是我国畜牧业的主体。作为动物机体的主要组织,肌肉和脂肪发育机制的研究,直接为我国畜牧业科学生产提供理论支撑。项目研究的总体思路与目标是:在组织、细胞、分子水平,对具有明显不同发育特征的品种、品系间进行系统的比较研究,挖掘不同猪、鸡动物品种、品系,肌肉和脂肪发育的细胞与分子基础,同时筛选出重点研究的遗传与表观遗传学调控途径;组合现代细胞与分子生物学实验研究技术,研究筛选的重要基因作用与信号通路,取得对动物组织发育调控机制的新理论知识。  相似文献   

14.
棉花组织培养性状纯化及外源基因功能验证平台构建   总被引:1,自引:0,他引:1  
《中国科技成果》2010,11(19):64-65
1立项背景农杆菌介导遗传转化技术是国内外普遍采用的棉花转基因方法,但该方法存在着“组织培养体系不稳定、重复性差,遗传转化效率低、周期长”等技术瓶颈,满足不了国内“海量涌现”的候选基因在棉花上快速功能验证的需求,制约了我国棉花基因工程育种的研发进程。  相似文献   

15.
可移动的信号分子对于植物的细胞之间、组织之间、器官之间以及植株与环境之间的交流非常重要。过去十几年的研究表明,作为一类信号分子,小肽在植物的干细胞维持、自交不亲和识别、气孔细胞的发育等重要生物学过程中起关键性作用。植物的小肽有很多种类,数量庞大,但我们对于绝大多数小肽参与什么生物学过程的调控以及它们的受体是什么均所知甚少。本文将侧重于综述目前有关小肽信号及其受体参与植物双受精过程的国内外进展,提出未来的研究方向,为彻底解析和阐明小肽信号在植物双受精中的作用奠定基础。  相似文献   

16.
转基因技术的发展及其推广给现代农业、医学和生物经济等领域带来了深刻的变化,然而,自从转基因技术问世以来,关于转基因作物和食品的安全性问题,一直是备受关注和极具有争议性的话题。本文从后常规科学的视角分析了转基因技术的发展和争论,认为有关转基因技术的争论实质上是两种不同科学观念的碰撞,是在常规科学框架下看待具有后常规科学特征的转基因技术的必然结果,并且认为后常规科学中的"扩大的同行共同体"和"延伸的事实"等概念为科学共同体传播具有不确定性的科技知识提供了新的视角,为公众参与科学讨论提供了理论依据,进而对促进科学家与公众的交流,推进科学决策的民主化进程具有积极的作用。  相似文献   

17.
水稻既是重要的粮食作物和基础研究的模式植物,也是杂种优势利用的成功典范。尽管杂种优势的利用在解决世界粮食安全问题上已做出重大的贡献,但杂种优势的分子机制在生物学和农学的基础研究中依然是一个有待阐明的重要课题。本研究利用水稻全基因组芯片,系统考察了超级杂交稻"两优培九"及其双亲——"培矮64s"(母本)和"93-11"(父本)在7个不同发育时期的组织中的基因表达谱,旨在揭示杂种一代(F1)与亲本的基因表达差异,并从中发现可能与杂种优势相关的基因。实验结果表明,从转录谱来看,杂种F1与亲本间的相似性大于亲本之间的相似性;在发现的3000多个杂种和亲本间差异表达的基因中,有各种不同的差异表达类型,多数是偏于单亲的显性表达,但也有只在杂种中出现的超亲表达。对差异表达基因的功能分类表明,虽然差异表达基因涉及诸多功能类群,但在少数功能类群(如能量代谢、碳水化合物代谢、转运等)中有明显的富集。对差异表达基因的基因组位置与产量相关的QTL(数量性状位点)进行关联分析的结果表明,差异表达基因在水稻基因组中的分布与QTL、尤其是与小区间的QTL有密切的关联;值得注意的是,部分落在QTL上的差异表达基因的功能注释有助于解释与QTL对应的体现杂种优势的农艺性状。  相似文献   

18.
转双抗虫基因741杨是河北农业大学与中国科学院微生物所合作,经过近10年的研究,获得的高新技术树木新品种. 该成果将部分改造的B tCrylAc基因与慈菇蛋白酶抑制剂基因构建的双抗虫基因表达载体,通过农杆菌介导法转化了优良杂种741杨,并获得了一批对鳞翅目害虫具有不同抗虫性的株系.经过国家农业基因工程安全委员会安全评价,确定其安全等级为一级,并批准进行中间试验.在经过严格的中间试验和大田环境释放试验之后,获国家林业生物基因工程安全委员会批准,在可监控条件下进行商品化销售.同时,转基因741杨已获得国家林业局新品种保护,并通过国家林木品种审定委员会审定,获得林木良种证书.  相似文献   

19.
分子器件   总被引:1,自引:0,他引:1  
19世纪,科学家更多地从原子层次上认识和研究化学。20世纪科学家则更多地从分子层次上认识和研究化学。进入21世纪,化学会在哪些方面取得重大突破?会遇到哪些挑战和难题?什么是未来化学的新生长点?化学在整个科学体系中占有什么地位?这些都是对化学有全局性、战略性指导意义的问题。中国科学院院士徐光宪先生曾说过这样一段耐人寻味的话,“我的专业是化学,我从学化学,教化学,到研究化学已有几十年了,可是现在我却有点搞不清楚化学的定义了。我深深感到科学的发展太快了,需要对本门科学重新认识,重新定位。这是我进入21世纪首先要关注的问题”。在新的世纪如何定位和审视化学,中科院文献情报中心《世界科学前沿发展态势分析》课题组对此进行了探讨。课题组首先选定了化学领域具有代表性的20种期刊,对这些期刊1999—2003年出现的关键词进行了统计分析,确定出了化学领域这几年的热点词,并通过与有关专家进行讨论,进一步整合出了下面13个重要研究方向:催化不对称合成、单分子、多孔材料、分子器件、光子晶体、化学动力学、活性自由基聚合、密度泛函理论、烯烃复分解反应、组合化学、酶催化、超分子化学分子自组装、燃料电池。课题组针对这些研究方向,邀请国内专家学者就这些研究方向的发展趋势进行了分析,同  相似文献   

20.
随着全球经济快速发展,石化资源日益紧缺,人类对可再生资源的关注程度越来越大。纤维素作为地球上最丰富的天然高聚物,对其开发应用已成为当今研究热点之一。目前工业应用中的纤维素多来自于生物合成,而绿色植物光合作用合成的纤维素中含有木质素和半纤维素杂质,因而,工业中应用植物纤维素前,需对其进行繁杂的预处理。一些细菌也具有合成纤维素的能力,其中木醋杆菌合成纤维素的能力较强,具有大规模生产的潜力。人们为了区别于其他途径获得的纤维素,称这种由微生物合成的纤维素为细菌纤维素。细菌纤维素,由于其特有的物理、化学和生物学特性、发酵过程的可调控性及发酵底物的多样性而被世界上公认为性能优异的新型生物材料。与合成高分子材料相比,细菌纤维素所具有的环境协调性使得细菌纤维素应用的研究成为目前材料研究中较为活跃的领域之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号