首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究无界域上半线性拟抛物方程的初边值问题ut-△ut=f(U),x∈Ω,t>0,u(x,0)=u0(x),x∈Ω,u|αΩ=0,与相应的柯西问题,证明了,若f∈C1,f(u)上方有界,且满足(H)|f'(u)|≤A|u|r,0≤γ<∞ if n=4;0≤γ≤4/n-4 if n>4且f(0)=0,u0(x)∈W2,2,2(Ω)∩W1,2,2(Ω)(对柯西问题为W2,2(Rn)),则问题存在一个整体W2,2解.  相似文献   

2.
研究当n≥4一类弱阻尼非线性四阶波动方程的初边值问题utt+Δ2u+αut=f(u),α0,x∈Ω,t0,u(x,0)=u0(x),ut(x,0)=u1(x),u|Ω=0,Δu|Ω=0,其中Ω∈Rn为有界域.利用Galerkin方法证明了如果f′(s)≤C0且存在常数A、B使得|f′(s)|≤A|s|p+B,其中0p≤n 4-4,n4;0p∞,n=4,u0∈H02(Ω)∩H01(Ω),u1∈L2(Ω),则问题存在整体弱解u(x,t)∈L∞(0,T;H02(Ω)∩H10(Ω)).并且讨论了问题整体弱解的唯一性及渐进性,拓宽了文献[1,2,5]所研究的问题,得到了较好的结果.  相似文献   

3.
具有两个异号非线性源项的波动方程的整体强解   总被引:2,自引:0,他引:2  
研究具有两个异号非线性源项的波动方程的初边值问题utt-Δu a|u|p-1u-b|u|q-1u=0,x∈Ω,t>0u(x,0)=u0(x),ut(x,0)=u1(x).x∈Ωu(x,t)=0.x∈Ω,t≥0其中ΩRn为有界域,a>0,b>0为常数,证明了:若p与q满足10,此问题存在唯一整体强解u(x,t)∈L∞0,T;H2(Ω)∩H10(Ω),ut(x,t)∈L∞(0,T;H10(Ω)),utt(x,t)∈L∞(0,T;L2(Ω)).  相似文献   

4.
研究如下拟线性椭圆方程组边值问题:{-ΔP1(x)u1 + u1| P1(x)-1u1 =λ(Fu1(x,u1,…,un)+μGu1(x,u1,…,un)) x∈Ω,-Δ2(x)u1 + u2|P2(x)-1u2 =λ(Fu2(x,u1,…,un) +μGu2(x,u1,…,un)) x∈Ω,-ΔPn(x)un + un| Pn(x)-1u =λ(Fun(x,u1,…,un)+μGun(x,u1,…,un)) x∈Ω,ui =0,(V)1≤i≤n x∈Ω(*)其中Δp(x)u=div(|▽u |p(x)-2▽u)为p(x)-Laplace算子,F和G:Ω×RN→R是满足一定条件的连续函数.在一定条件下,证明了存在一个开区间Λ(∈)[0,+∞)和一个实数q,使得对每一个λ∈Λ,所论问题至少有三个弱解.  相似文献   

5.
研究了半线性拟抛物方程的初边值问题ut-△ut =f(u) x ∈Ω,t >0 (1.1)u(x,0) = u0(x), x ∈Ω (1.2)u|(δ)Ω =0,t≥0 (1.3)古典解的blow-up性.讨论了正解的存在性.研究了(1.1)~(1.3)的古典解u(x,t)的blow-up性,即存在T0≤(1 λ0)∫∞αg-1(x)ds使得limt→T-0‖u‖p=∞对1≤p≤∞.  相似文献   

6.
障碍问题局部可积性的一个注记   总被引:1,自引:1,他引:0  
考虑A-调和方程divA(x,u)=0,设算子A满足:(i)强制性条件A(x,ξ),ξ≥α|ξ|p-φ1(x);(ii)控制增长条件|A(x,ξ)|≤β|ξ|p-1+φ2(x);(iii)齐次性条件A(x,0)=0,其中1pn,0α≤β∞是非负常数,φ1(x)∈Llso/cp(Ω),φ2(x)∈Lslo/c(p-1)(Ω),1psn。设Kψp,θ(Ω)={v∈W1,p(Ω):v≥ψ,a.e.Ω,v-θ∈W01,p(Ω)},ψ为定义于Ω取值于R∪{±∞}的障碍函数,θ∈W01,p(Ω)为边值。利用Sobolev空间的不等式及嵌入引理,得到了如下局部可积性结果:若0≤ψ∈Wl1o,cs(Ω),则Kψp,θ-障碍问题的解u∈Llso*c(Ω),s*=nn-ss。本结果可看成是高红亚,田会英的结果的推广。  相似文献   

7.
以变指数Sobolev空间为框架,运用截断函数逼近的方法,研究如下具p(x)增长的椭圆型方程{- div a(x,u,▽u)+a0(x,u,▽u)=f,x∈Ωu=0, x∈(e)Ω在空间中熵解的存在性,其中Q(∪)RN(N≥2)为有界区域,f∈L1(Ω).  相似文献   

8.
研究一类在非线性光学中提出的Schr(o)dinger方程的Cauchy问题iut △u |u| p-1 u=0;u(x,0)=u0 (x),x∈Rn,t≥0的整体解存在性问题,由于此时间题已不再具有正定能量.通过利用Galerkin结合位势井的方法证明了在满足条件1 < p < ∞,n=1,2;1< p ≤n 2/n-2,n≥3,u0(x)∈H1(Rn),0相似文献   

9.
研究具有两个异号非线性源项波动方程的初边值问题utt+Δ2u+αut+a|u|p-1u-b|u|q-1u=0(α0,a0,b0).该方程用以描述具有两个性质相异的源作用下的物理系统.利用Galerkin方法证明了若1≤n≤4时,1qp∞;n≥5时,1qpnn-+44,u0(x)∈H02(Ω),u1(x)∈L2(Ω),则问题存在一个整体弱解u(x,t)∈L∞(0,T;H20(Ω)).  相似文献   

10.
本文研究双曲型方程一种反问题,即是由条件: u_(tt)=△u P(x,y)u,(t>0,(x,y)∈R~2) u|t=0=O,u_t|t=0=(x,y),((x,y)∈R~2) u_x|x=0=g(y,f),(f≥0,y∈R~1) 确定函数对(p,u)的问题是文章[1]的推广,与[1]研究的问题不同,处理方法都是用能量不等式方法。这种问题不是古典意义下适定的,但是按Тuxонов意义下条件适定的[2]。我们给出了相应的条件适定的集合F和F_o,证明了唯一性稳定性的两个定理。  相似文献   

11.
设ΩRN(N≥5)是一个有界光滑区域,且0∈Ω,0≤s≤4,2*=2N/N-4是Sobolev临界指数,f(x),g(x)是已给函数.借助变分方法,本文在f(x),g(x),μ,λ的一定条件下,讨论了临界非齐问题Δ2u-μu|x|s=|u|2*-2+λμf(x)+g(x)满足Dirichlet边界条件的解的存在性.  相似文献   

12.
考虑有界区域Ω RN上非齐次半线性椭圆型方程-Δu=up+λf(x)在齐次混合边值条件(即第三边值问题) u=0下的正解的存在性和不存在性,其中p∈(1,N+2 n+αuN-2),N>2,或p∈(1,∞),1≤N Ω≤2,f(x)∈L∞(Ω),证明了存在2个常数λ ≥λ >0,使当λ∈(0,λ )时,上述问题至少存在2个正解,而当λ>λ 时没有正解.  相似文献   

13.
考虑一致椭圆问题Lu=-(?)_k(a_(ij)(?)_t+b_ju)+c_1(?)_iu+du=f,x∈Ω,u|_Γ=0及m≥1次有限元解u_h∈s_h,这里b_i,c_j,d是无界函数。采用权范数方法及对偶论证,在某些条件下我们得到了最佳渐近L_p误差估计|u-u_h|_(s,p)≤cp~(′μ)h~(l-s)|ln h|~λ|u|t,p,1≤l≤m+1,s=0,1,1相似文献   

14.
得到了一类带齐次Dirichlet边界条件的非局部抛物型方程ut=Δu+1|x|n-2*|u|()p|u|p-2 u,x∈Ω,t0的爆破时间t*的下界估计.  相似文献   

15.
一个自动催化化学反应的数学模型及其正解   总被引:1,自引:1,他引:0  
本文建立了一个自动催化化学反应数学模型:△u λf(u k)=0,x∈Ω;u(x)=0,z∈эΩ,其中f(u)=u^p-u^p 1(p≥1),k≥0是常数,Ω是R^n(1≤n≤3)中单位球.  相似文献   

16.
设u∈W~5,∞~(Ω)∩H_0~1(Ω)是模型问题-△u=f,u|_(0Ω)=0的解,u~h∈S~h是u的二次有限元逼近我们得到了下面的外推估计:■其中Z_0是粗h一网格的任何角节点。  相似文献   

17.
考虑半线性椭圆方程组{△u+f(v)=0,x∈Ω △v+g(w)=0,x∈Ω △w+h(u)=0,x∈Ω u=v=w=0,x∈δΩ 的Pohozaev等式,其中Ω∪→R^n是有界区域,u,v,w∈C^2(Ω)∩↓C^1(Ω),f、g、h:R→R是连续函数。  相似文献   

18.
讨论了一类非线性抛物方程组{ut=d1△u-a11u+∫Ωk(x,ξ)v(ξ,t)dξ(x,t)∈Ωx(0,∞) vt=d2△v-α22v+g(u) Bu=α(x)u/n+β(x)u=0 x∈Ω Bv=α(x)u/n+β(x)v=0 u(x,0)=u0(x),v(x,0)=v0(x) x∈Ω解的性质,利用微分方程上下解方法证明初值适当小时,方程存在整体解.推广了相关文献所给方程组的结果.  相似文献   

19.
对n上的粗糙核分数次积分算子TΩ,αf(x)=∫n|Ωx(-x-y|yn)-αf(y)dy证明了若权函数(u,v)满足一定的Ap条件,则TΩ,α是弱有界的,其中0αn,Ω∈Ls(Sn-1)为n上的零次齐次函数.  相似文献   

20.
考虑半线性椭圆方程组Δu+λf(u,ν)=0,x∈Ω,Δv+λg(u,ν)=0,x∈Ω,u(x)=ν(x)=0,x∈Ω.(1)其中λ0,Ω是有界光滑区域.f,g是定义在R2+=(0,∞)×(0,∞)上的实值函数,在满足一定条件下,讨论此半线性椭圆方程组正解的稳定性问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号