首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
徐鹏 《自然杂志》2023,(6):468-474
表观遗传学开拓者、染色质生物学先驱查尔斯·戴维·阿利斯(C. David Allis)的猝然离世,立即引发生物医学界广泛而深远的悼念。借助一系列简介、采访、悼文以及相关原始文献,文章系统地回顾了C. David Allis传奇的一生,梳理了C.David Allis影响深远的贡献。其中包含4项原创研究贡献:发现第一个组蛋白乙酰基转移酶;揭示组蛋白H3第10位丝氨酸磷酸化(H3S10ph)与细胞分裂的关系;参与发现第一个组蛋白位点特异性的甲基转移酶;推动组蛋白变体和“致癌组蛋白(oncohistone)”领域的进展。一项理论贡献:提出“组蛋白密码(histone code)”的假说。两项对表观遗传学界的贡献:作为发起人之一,参与对组蛋白修饰酶的系统命名;作为主编之一,编撰Epigenetics专著。  相似文献   

2.
孙海晶  陆军  徐鑫  魏亮  黄百渠 《科学通报》2004,47(9):863-868
IL-18是调节先天性免疫和获得性免疫的重要细胞因子, 在Th1的发育中起着重要作用. p300是一种具有组蛋白乙酰化酶活性的转录辅因子. HDAC3是一种组蛋白去乙酰化酶. 通过一系列共转染实验证实, p300能够刺激外源IL-18 启动子活性, 而HDAC3则抑制其活性. p300的乙酰化酶活性对于增强IL-18 p1启动子荧光素酶报告基因激活是必需的. p300能提高转录因子c-Fos介导的IL-18启动子荧光素酶报告基因的活性, 这种作用能被HDAC3抑制. p300对于内源IL-18 mRNA 合成有增强作用. 首次证实了组蛋白乙酰化酶和去乙酰化酶参与IL-18 p1启动子活性的调控, 为进一步研究IL-18基因表达调控的机制奠定基础.  相似文献   

3.
IL-18是调节先天性免疫和获得性免疫的重要细胞因子,在Thl的发育中起着重要作用.p300是一种具有组蛋白乙酰化酶活性的转录辅因子.HDAC3是一种组蛋白去乙酰化酶.通过一系列共转染实验证实,p300能够刺激外源IL-18启动子活性、而HDAC3则抑制其活性.p300的乙酰化酶活性对于增强IL-18pl启动子荧光素酶报告基因激活是必需的.p300能提高转录因子c-Fos介导的IL-18启动子荧光素酶报告基因的活性,这种作用能被HDAC3抑制.p300对于内源IL-18mRNA合成有增强怍用.首次证实了组蛋白乙酰化酶和去乙酰化酶参与IL-18pl启动子活性的调控,为进一步研究IL-18基因表达调控的机制奠定基础.  相似文献   

4.
为研究全反式维甲酸(all-trans retinoic acid, ATRA, 简称RA)诱导人类神经细胞分化的表观遗传调控机制, 应用染色质免疫沉淀与启动子芯片联合技术(ChIP-on-chip), 对RA诱导24 h后神经母细胞瘤SH-SY5Y细胞中两万余个基因启动子区的组蛋白H3乙酰化修饰状态进行了高通量检测和分析. 首先分别制备RA处理组和对照组的标记探针, 然后将人类基因组启动子芯片与探针进行杂交, 获得RA诱导SH-SY5Y细胞分化早期全基因组启动子区H3组蛋白乙酰化的数据. 结果分析显示, RA处理导致597个基因启动子的乙酰化程度显著升高、647个基因降低. 本研究结果显示上述技术的高效与可行, 并为深入研究RA诱导分化相关基因的表观遗传调控机制奠定了基础.  相似文献   

5.
李晓雪  陆军  赵艳梅  王秀丽  黄百渠 《科学通报》2005,50(15):1600-1604
在天然同步化的多头绒泡菌(Physarum polycephalum)细胞中, 组蛋白去乙酰化酶抑制剂Trichostatin A (TSA) 阻断了细胞周期S/G2, G2/M以及走出有丝分裂期的转换, 同时影响了2种ras基因(Ppras1Pprap1)的转录以及Ras蛋白的表达水平. 抗Ras蛋白的抗体中和实验结果表明, Ras蛋白通过调节Cyclin B1的表达水平在细胞周期转换点的调控中起重要作用. 以上结果表明, 在多头绒泡菌细胞中Ras蛋白可能是参与组蛋白乙酰化修饰介导的细胞周期调控过程的一个关键因子.  相似文献   

6.
王启军  赵世民 《科学通报》2010,55(21):2063-2067
能量代谢一直是最为热门的研究领域之一. 对乙酰化调控代谢的机理的研究发现, 代谢酶类赖氨酸残基的乙酰化修饰与很早就发现的转录调控、反馈抑制、变构调节及磷酸化修饰一样, 是一种广泛存在于原核和真核生物体内的保守代谢调控机制, 即乙酰化修饰不仅可以抑制/激活代谢酶的催化活力、影响蛋白的稳定性, 还可能协调代谢途径中各个代谢酶类的活性, 并在协调不同通路的代谢流分布中发挥更为广泛的生理功能, 进而在细胞整体水平上调控代谢. 最近还发现一些中间代谢物在细胞信号中起重要作用, 不平衡地积累2-羟基戊二酸或减少α-酮戊二酸会对加双氧酶蛋白家族产生重要的影响, 改变包括HIF途径在内的肿瘤相关信号通路, 并可能引起组蛋白甲基化修饰的改变. 由于代谢与人类疾病紧密相关, 这些新的发现在科学界引起了人们广泛的兴趣.  相似文献   

7.
关于染色体骨架的研究   总被引:3,自引:1,他引:2  
郝水 《科学通报》1989,34(23):1761-1761
近10多年来关于染色质和染色体超微结构的研究有了很大进展。70年代发现的核小体(nucleosome)已被证明是真核生物染色质和染色体的基本结构单位。这一发现为染色体的超微结构研究奠定了坚实基础。70年代后期,一些作者在去除组蛋白的中期染色体中看到由非组蛋白蛋白质(nonhistone protein,NHP)构成的骨架(scaffold)结构,也引起了广泛重视。对这种骨架结构虽然已从不同角度做过许多研究,但关于它是否是染色体中的  相似文献   

8.
研究了把基因启动子区的核小体定位对于分析基因的转录调控具有重要意义.利用核小体定位的预测技术——弯曲度谱,分析了编码基因和miRNA基因启动子周围核小体定位的特征.基因的转录起始位点处,有一个核小体缺失区域,且在下游约200bp处,有较强的核小体定位信号.独立转录的内含子miRNA基因与基因间区miRNA基因,在启动子区具有相似的核小体定位特征,在上游0~-400bp间,有一个较宽的核小体缺失区域,在该区域分布有较多的转录因子结合位点;而依赖编码基因转录的内含子miRNA基因,其启动子与蛋白编码基因启动子具有相似的核小体定位特征,在转录起始位点上游-200~-400bp和-400~-600bp处,各有一个较强的核小体定位.这些结果表明,独立转录的miRNA基因(包括基因间区miRNA和独立转录内含子miRNA)和蛋白编码基因,在启动子区可能具有不同的核小体定位特征.核小体定位不仅参与编码基因的转录调节,也影响miRNA基因的转录.  相似文献   

9.
一条重要水稻酯酶同工酶带的发现   总被引:1,自引:0,他引:1  
李任华 《科学通报》1994,39(22):2095-2095
湖北粳型光敏核不育水稻农垦58S和籼型温敏核不育安农S的发现为利用两系法水稻杂种优势提供了新的途径,同时,也为生理遗传学和发育遗传学研究提供了重要的试验材料.光敏核不育(PGMS)和温敏核不育(TGMS)在不同的光温条件下具有明显的育性转换特点.研究表明,农垦58S在不同光周期条件下,叶片和幼穗中多种酶的活性表现降低或增加的明显变化.胡学应、万邦惠的研究结果认为Adh-1和Est-3两同工酶基因位点与育性有密切关系.本文作者首先在N4225和安农S中发现一条与育性转换关系密切的酯酶同工酶带以后,扩大试验材料,在21份不同的光(温)敏核不育材料的初步研究中,也证明了此带的特异性表达.  相似文献   

10.
高等植物的开花是由植物的内在因素和环境因素两方面控制的. 在拟南芥中, 控制开花的几个主要的遗传位点已经被鉴定. 拟南芥Flowering Locus C 基因(FLC)通过作用于自主途径抑制由营养生长向生殖生长的转化. FLC 的表达能被FLD 抑制, 而后者编码组蛋白去乙酰化酶复合体的一个成分. 本研究分离鉴定了一个新的FLD 等位突变体fld-5. 遗传分析表明, fld-5(Wassilewskija 生态型)和前人报道的fld-3 和fld-4(Colombia-0 生态型)是等位突变体. 遗传学和分子生物学分析表明, fld-5 在FLD 编码区有一个移码突变, 从而导致其可读框的提前终止. 在fld-5 突变体中FLC 的表达显著增加, 因此可能导致该突变体呈现出异常的晚花表型。  相似文献   

11.
蛋白质翻译后修饰研究进展   总被引:5,自引:0,他引:5  
胡笳  郭燕婷  李艳梅 《科学通报》2005,50(11):1061-1072
蛋白质翻译后修饰在生命体中具有十分重要的作用. 它使蛋白质的结构更为复杂, 功能更为完善, 调节更为精细, 作用更为专一. 常见的蛋白质翻译后修饰过程有泛素化、磷酸化、糖基化、脂基化、甲基化和乙酰化等. 泛素化对于细胞分化与凋亡、DNA修复、免疫应答和应激反应等生理过程起着重要作用; 磷酸化涉及细胞信号转导、神经活动、肌肉收缩以及细胞的增殖、发育和分化等生理病理过程; 糖基化在许多生物过程中如免疫保护、病毒的复制、细胞生长、炎症的产生等起着重要的作用; 脂基化对于生物体内的信号转导过程起着非常关键的作用; 组蛋白上的甲基化和乙酰化与转录调节有关. 在体内, 各种翻译后修饰过程不是孤立存在的. 本文对上述几种类型的蛋白质翻译后修饰的研究近况进行了综述, 讨论了各种翻译后修饰形式相互影响、相互协调的关系.  相似文献   

12.
董立平  陈萍  李国红 《自然杂志》2014,36(4):274-279
真核生物的遗传物质DNA以染色质形式通过逐级折叠压缩存在于细胞核中。DNA缠绕组蛋白八聚体形成核小体,相邻的核小体由连接DNA串联起来形成染色质的一级结构:核小体串珠结构(beads-on-a-string)。一级结构进一步折叠形成30 nm染色质纤维。近30多年来,30 nm染色质纤维高级结构的解析一直是困扰分子生物学家们的一大难题。研究者利用电镜和X射线晶体学等生物物理学方法对30 nm染色质纤维结构进行研究,提出30 nm结构的两大模型:螺线管(solenoid)模型和Z字结构(zig-zag)模型。笔者综述了30 nm染色质纤维结构解析方面的研究进展,并着重阐述最近利用冷冻电镜方法解析的30 nm染色质结构,即以四个核小体为结构单元的左手双螺旋结构模型,最后对30 nm染色质纤维在体内是否存在,以及它在表观遗传调控中可能发挥的重要作用等问题进行了讨论和展望。  相似文献   

13.
组蛋白和核小体在基因转录中的作用   总被引:6,自引:0,他引:6  
有证据表明,染色质和核小体构型的改变在转录的起始中起着重要的调节作用。根据这方面的最新研究进展,结合部分实验结果,初步探讨了以相关问题:(1)转录起始与核小体改构(nucleosome remodeling)。评述了两类起不同作用的核小体改构复合体(nucleosome remodeling complexes),一类是具有DNA激活的ATP酶活性的复合体,它们通过重构核小体的组蛋白核或改变DNA  相似文献   

14.
采用紫外差谱、荧光光谱和圆二色性光谱法对鼠肝组蛋白H1和H3与尼古丁作用后的构象变化进行了体外研究.结果表明,随尼古丁作用剂量的增加其构象逐渐由有序向无序变化.造成这种变化的原因,可能是尼古丁或其代谢产物与组蛋白H1,H3发生加合.因此推测,尼古丁可以通过改变组蛋白的构象来影响染色体的结构、功能和基因表达.  相似文献   

15.
体细胞克隆中核的重编程   总被引:1,自引:1,他引:1  
李世杰  杜卫华  李宁 《科学通报》2004,49(8):721-726
尽管体细胞克隆在绵羊、牛、小鼠、猪、山羊、兔、猫、大鼠和骡子等物种中都获得了成功, 但却未能得到狗和猕猴的克隆个体, 而且克隆效率非常低. 克隆效率低使体细胞克隆技术在科研和生物技术等方面的应用受到限制. 供体核移入去核的卵细胞后, 必须经过表观遗传修饰的重编程, 回到胚胎开始发育的全能状态. 目前认为: 供体核的不完全重编程是导致克隆效率低的主要原因. 本文从DNA甲基化、组蛋白乙酰化、X染色体失活、端粒、印记基因以及其他发育相关基因的表达几个方面来探讨影响克隆效率的因素.  相似文献   

16.
马达  HUANG Hua  黄赞 《科学通报》2010,55(3):220-228
尽管IFN-γ单独不能触发Ⅰ型T辅助细胞(Th1)分化, 但IFN-γ信号缺失却会导致缺陷的Th1细胞表型: IFN-γ受体缺失(Ifngr-/-)的Th1细胞不能永久地抑制IL-4的表达; 在Th2诱导条件下, 它们能分化成产生IL-4的细胞, 说明IFN-γ在Th1细胞中沉默Il4基因和稳定Th1细胞表型过程中起着关键作用. IFN-γ信号可能通过抑制STAT6磷酸化来抑制IL-4的表达. 作为介导IFN-γ信号转导的下游分子, 本研究的目的是研究STAT1在Th1细胞中抑制IL-4表达的可能机制. 研究结果显示, STAT1缺失的幼稚CD4+ T细胞中IFN-γ表达水平降低, 而IL-4表达水平升高. 这些细胞在非极性条件下趋向于分化成Th2细胞. 在Th1诱导条件下, STAT1缺失的幼稚CD4+ T细胞呈现缺陷的Th1分化: Stat1-/- Th1细胞中IFN-γ和T-bet表达水平都降低; 这些细胞也不能抑制IL-4和GATA-3的表达, 并且保留了STAT6信号转导. 更重要的是, 在Th2诱导条件下, Stat1-/- Th1细胞能高效地被转化成产生IL-4的细胞. 在Stat1-/- Th1细胞中异位表达的T-bet能明显地抑制这种转化的能力, 并显著恢复IFN-γ表达. 这说明STAT1可能通过维持T-bet的表达来抑制IL-4的表达. 最后, 在Stat1-/- Th1细胞中观察到位于Il4基因两个增强子区域的组蛋白H3乙酰化(H3AC)和组蛋白H3赖氨酸K4二甲基化(H3K4dim), 提示这些细胞中的Il4基因位点可能处于开放的状态. 研究结果显示, 在Th1细胞中STAT1信号可能介导Il4基因抑制的新机制: 上调T-bet从而抑制GATA3和IL-4表达、抵抗STAT6信号转导, 并抑制Il4基因位点表观遗传修饰.  相似文献   

17.
郭婧  何新建 《自然杂志》2024,(2):117-129
真核生物基因组DNA及其所包绕的组蛋白形成的核小体是染色质的基本单位。染色质的形成一方面有助于将基因组DNA组装到细胞核中,另一方面也对基因表达具有重要影响。染色质重塑因子能够利用水解ATP产生的能量调控染色质上核小体的组装、移除、滑动及组蛋白变体的置换等,从而调控基因转录和其他多种生物学过程。真核生物中的染色质重塑因子主要包括SWI/SNF、ISWI、CHD和INO80四类,这些染色质重塑因子往往以多亚基复合体的形式存在。最近的研究工作系统鉴定了植物染色质重塑复合体的亚基组成和功能,揭示了植物染色质重塑复合体相对于酵母及动物染色质重塑复合体的保守性和特异性。对于这些复合体调控基因转录分子机制的认识也在不断深入。这些发现为深入研究染色质重塑在植物生长发育和胁迫应答中的作用奠定了基础。  相似文献   

18.
李娇  郑海荣  高伟  何恩节  高当丽  田宇 《科学通报》2012,(25):2366-2370
采用水热法分别合成了四方相LiYF4:Yb3+/Er3+和LiYbF4:Yb3+/Er3+的八面体晶体颗粒,并通过XRD,SEM,荧光光谱观测等手段对其晶相、形貌及上转换荧光效应等进行了研究.结果表明,EDTA(乙二胺四乙酸)表面活性剂的引入导致了样品平均粒径和结晶度的变化及发光强度等的变化.在波长为980nm激光的激发下,观测到了源于2H11/2→4I15/2和4S3/2→4I15/2跃迁的绿色上转换荧光发射、4F9/2→4I15/2跃迁的红光发射和2H9/2→4I15/2跃迁所产生的微弱紫光发射;分析了上转换发光机理和基质变化对上转换荧光性质的影响.  相似文献   

19.
宋磊  姜彦竹  张雪洪 《科学通报》2011,56(32):2689-2698
tmRNA 是部分tRNA 和一小段mRNA 的结合体, 已被证明是作为基因水平转移产物之一的基因岛的整合位点. 我们通过序列比对和比较基因组学的方法确定了散布在肠杆菌科的13 个属中整合位点为tmRNA的68 个基因岛, 其中53 个基因岛属于大肠杆菌(Escherichia coli)和沙门氏菌(Salmonella enterica). 在这53 个基因岛中, S. enterica subsp. enterica serovar Agona str. SL483 等8 个基因组, E. coli S88 和E. coli O55:H7 str. CB9615 中发现了2 个及以上连续的基因岛, 即形成了串联基因岛. 其中, S. enterica subsp. enterica serovar Typhimurium SL1344 中发现在该位点有3 个连续的基因岛组成的串联基因岛. 通过在大肠杆菌和沙门氏菌已测序的基因组中分析整合位点为tmRNA 的可变区, 发现大多数的基因组除了在可变区中包括了基因岛区之外, 还有一段残余的可变区. 确定了串联基因岛进入基因组的时间顺序, 即远离tmRNA 的基因岛先于靠近tmRNA 的基因岛整合进入该基因组中. 上述的基因岛中整合酶主要有3 种类型, 分别是HP1 整合酶, PhiCTX 整合酶和P4 整合酶, 以P4 整合酶所占的比例最多. 在串联基因岛中, 远离tmRNA 的基因岛中的整合酶是P4 整合酶, 其次是PhiCTX 整合酶,最靠近tmRNA 的基因岛所用的整合酶是HP1 整合酶, 由此可以得出tmRNA 是研究串联基因岛的遗传与进化的重要位点的结论.  相似文献   

20.
卓敏  周惠  黄展鹏  梁丹  陈春龙  陈月琴  屈良鹄 《科学通报》2003,48(16):1785-1790
构建了一个水稻核内小分子RNA的cDNA文库, 经初步筛选获得30种boxC/D snoRNA. 与目前已鉴定的水稻snoRNA序列相比较, 除了U14等7种snoRNA 之外, 其余23种均为首次在水稻中发现. 在23种新的水稻boxC/D snoRNA中, 11种只存在于水稻中, 其余12种中, 6种为植物特有, 6种在酵母、动物和拟南芥中存在同源分子. 17种snoRNA指导了水稻5.8S, 18S和25S rRNA中24个2′-O-核糖甲基化修饰核苷, 其中19个靶位点的修饰已被证实. 6种新的水稻snoRNA不具有与rRNA互补的反义序列, 是一类新的snoRNA. 研究结果表明, 通过构建核内小分子RNA的cDNA文库可以有效地分离和鉴定水稻中新的snoRNA. 这些新发现的snoRNA对于阐明植物snoRNA基因组织和表达以及rRNA中2′-O-核糖甲基化修饰位点的产生机制具有重要意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号