首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 16 毫秒
1.
采用非真空热轧方法制备304不锈钢/Q235碳钢复合板材,利用OM、SEM、EDS等研究了不同压下率和轧后冷却方式下复合界面夹杂物、界面组织及力学行为的演变,并分析了C扩散对复合板界面组织形成及结合强度的影响。结果表明,随着轧制压下率的增加,界面夹杂物由块状向线型、连续点状乃至弥散点状分布变化。当压下率较低(28%)时,复合板剪切断裂位于结合界面处,随着压下率增加至47%及以上,复合板断裂位置为脱碳铁素体区。另外,热轧复合板经水冷工艺处理后,由于冷却速率较快,要抑制碳钢侧C元素的扩散,避免复合界面处脱碳区域的形成,从而提高了复合界面的结合强度。  相似文献   

2.
采用AZ31镁合金和纯铝进行高温复合轧制制备镁-铝复合板,使其兼具铝的表面耐蚀性和镁合金的高比强度特性.采用金相显微镜、扫描电子显微镜和电子万能拉伸机等设备,研究了不同热轧温度及退火工艺参数对铝-镁复合界面的显微组织和结合强度的影响.结果表明:300 ℃轧制,镁-铝复合板出现严重边裂;450 ℃轧制,边裂消失;在轧制温度为400 ℃、压下率为50%、300 ℃退火2 h的条件下得到的复合板界面结合强度最大,为7.5 MPa.  相似文献   

3.
将25Cr5MoA钢/微合金钢/Q235钢板复合板坯加热到轧制温度950~1100℃,经保温后轧制1道次,压下量为50%~65%,制成25Cr5MoA钢/微合金钢/Q235钢热轧复合板试样.利用剪切实验方法测定了复合板材的界面结合强度,通过光学显微镜观察结合界面的组织.结果表明:当轧制温度为1000~1100℃时,25Cr5MoA钢/微合金钢/Q235钢能有效复合;压下量对25Cr5MoA钢/Q235钢复合板界面结合强度有一定的影响,当压下量达到一定程度后,随着压下量的增加,复合板的结合强度逐渐降低;轧制温度对25Cr5MoA钢/微合金钢/Q235钢复合板界面结合强度影响很大,在道次压下量一定的情况下,随着轧制温度的升高,复合板的结合强度逐渐升高.在1100℃的轧制温度和50%压下量的轧制条件下结合强度达到最大值.  相似文献   

4.
为解决高强铝合金特厚板的心部偏析、疏松、气孔等问题,提出了一种高强铝合金特厚板的制备方法,即基于真空搅拌摩擦焊的热轧复合技术.该技术的流程包括:铝合金坯料表面清理、利用自主研发的真空搅拌摩擦焊机进行坯料封装及复合坯料的热轧和热处理.在0.01Pa真空度下对7050高强铝合金进行焊接封装,然后在450℃和75%总压下率下进行轧制复合,最后对复合板进行固溶+时效处理.分析发现,复合界面无任何裂纹、气孔等缺陷,原始界面消失,两侧金属融为一体,界面仅分布少量细小的MgO颗粒.界面剪切强度达266MPa,达到基材的99%,界面实现了优异的冶金结合.  相似文献   

5.
对四层对称轧制复合时的压下率变化规律进行了研究,发现四层对称轧制复合时,同一次复合的两块复合板的压下率并不完全相等(ε1≠ε2),四层复合的总压下率εΣ介于两块复合板的压下率ε1与ε2之间,并且总压下率εΣ等于两块复合板的平均压下率。  相似文献   

6.
真空轧制不锈钢复合板的组织和性能   总被引:5,自引:0,他引:5  
采用真空轧制法对6mm厚的奥氏体不锈钢板和50mm厚的碳钢板复合.在高真空、高温和大轧制力的共同作用下,界面实现了牢固的冶金结合并且最终得到了高质量的不锈钢复合板.研究发现界面无开裂和氧化层,仅在界面附近分布少量细小弥散的Si-Mn氧化物颗粒.通过能谱发现不锈钢侧的Cr和Ni向碳钢迁移,在界面形成一薄层富Cr,Ni层,导致复合层硬度升高;碳钢中的C向不锈钢侧迁移导致出现脱碳区,且该区硬度最低.界面的剪切强度达467MPa.  相似文献   

7.
相对于爆炸复合法和爆炸-轧制复合法而言,采用真空-轧制生产钛钢复合板的方法更加适应大规模生产需要.本实验将TA1钛材置于两块Q345钢材中间组成组合坯,组合坯经抽真空至0.1 Pa后密封,在840~930℃下进行加热轧制,对轧制复合样进行力学性能检测,并利用扫描电镜、X射线衍射分析及显微硬度仪对组织与界面结合度进行分析.在该实验条件下,钛钢复合板剪切强度在159 MPa以上,达到了1类复合板标准要求,870℃轧制复合板性能较优.900和930℃轧制时,钛发生相变,同时在界面处生成了较多的金属间化合物,钛和钢的变形抗力相差过大和变形不协调导致界面附近的内应力变大,这些因素都降低了界面的剪切强度.840℃轧制后剪切强度低的原因是由于温度过低影响了界面附近元素的扩散.  相似文献   

8.
异步轧制铜/铝双金属复合板变形行为的研究   总被引:2,自引:0,他引:2  
采用异步轧制复合工艺制备了铜/铝双金属复合板,分析了轧制工艺参数对复合板变形行为的影响,结合轧制变形区金属受力状态探讨了复合过程中的金属变形及流动规律.结果表明:异步轧制变形区内界面摩擦剪切作用直接影响母材的受力状态,共同变形区内双金属间的搓轧作用对金属流动及结合效果影响最大.异步速比越大,硬质金属变形越大.总压下率增大时,组元金属压下率均呈正比关系增加,且软、硬两种金属的压下率差值越来越小.  相似文献   

9.
矩形断面铜包铝连铸坯轧制成形导电扁排的工艺及性能   总被引:2,自引:0,他引:2  
采用水平连铸直接复合成形工艺制备了断面尺寸为50 mm×30 mm×3 mm×R4 mm的铜包铝复合棒材,通过多道次平辊轧制和精整拉拔,制备了断面尺寸为60 mm×8 mm的铜包铝复合扁排,研究了合理的轧制工艺、扁排的力学和导电性能.结果表明:扁排的最终轧后宽度与侧边部开裂具有相关性,可通过轧制过程的压下量分配和轧制温度控制扁排宽度,从而防止边部开裂.合理的轧制温度为室温至200℃.在室温平辊轧制时,较为合理的轧制制度为5道次平辊轧制,第1道次压下率为20%左右,最大道次压下率为30%左右.轧后经1道次精整拉拔,可获得外形尺寸精确、表面质量良好的铜包铝复合扁排.经退火处理后,铜包铝复合扁排电阻率为2.084×10-8Ω.m,抗拉强度为122.7 MPa,延伸率为22.0%,界面剪切强度为25.9MPa.  相似文献   

10.
研究了不同冷轧压下率对铸轧法制备的Cu/Al复合板材界面微观组织和力学性能的影响。研究结果表明:冷轧过程中压下率过大时界面层会发生断裂而破碎,进而影响复合材料性能。冷轧压下率从29%逐渐增加到57%时,界面层的破碎程度逐渐加重,复合板抗拉强度逐渐增大,延伸率则随之下降,同时剥离强度先迅速减弱后缓慢增强。当冷轧压下率达到57%时,界面扩散层被严重破坏,形成大量纯铜和纯铝直接接触、无明显扩散的结合界面,铜铝复合板主要靠机械咬合力结合。  相似文献   

11.
有助复剂温轧不锈钢复铝板实验研究   总被引:8,自引:2,他引:8  
实验研究了浸涂助复剂和中温轧制工艺对不锈钢和铝固相复合界面结合强度及复合板深加工性能的影响·结果表明,原料表面浸涂助复剂不仅可以有效清除不锈钢和铝表面的氧化层,同时反应生成的覆盖膜在加热时又可防止和减少材料表面的再氧化和二次污染,有利于提高界面的结合强度;采用中温轧制工艺不仅在小变形的条件下即可实现不锈钢和铝复合界面的良好结合,而且能明显降低复合过程中不锈钢的变形率分配,有利于改善复合板的深加工性能  相似文献   

12.
冷轧复合对铝合金复合箔组织与性能的影响   总被引:1,自引:0,他引:1  
研究了在冷轧复合法生产汽车散热器用铝合金复合箔的工艺中,冷轧首道次压下率、包覆层厚度及成品前退火制度对复合箔组织与性能的影响.结果表明:皮材A4045和芯材A3003在30%~50%的首道次压下率下可以实现良好的初结合,冷轧工艺生产的复合箔上、下包覆层的厚度基本一致.最后一道次的精轧压下率在25%~35%之间时,复合箔成品的抗下垂性能最佳.复合箔成品前的退火温度应控制在320~400℃,退火温度为400℃时,退火时间以不超过80 min为宜.  相似文献   

13.
分析扭振在道次轧制中的变化特点,得知头部咬入阶段的峰值扭矩是制约道次压下量的关键因素.结合整个轧制过程的稳态轧制扭矩的变化规律,提出在展宽阶段和伸长阶段前几个道次采用头部增厚法,即在咬入阶段后的稳态轧制过程适当增加道次压下量.并推导出轧制扭矩和压下量的关系式,得到道次压下量的放大范围.该方法能在不改动轧机设备的前提下提高轧机能力,适合在中厚板轧机上进行推广使用.  相似文献   

14.
两次冷轧压下率分配对IF钢深冲性能的影响   总被引:3,自引:1,他引:3  
为提高IF钢深冲性能,以热轧带钢为原料,采用两次冷轧的实验方法,在实验室冷轧机上进行润滑轧制·冷轧实验表明,在总压下率一定的情况下,两次冷轧压下率的分配是影响IF钢深冲性能的关键·实测轧制试件的r值,得出在总压下率一定时,两次冷轧比一次冷轧的塑性应变比r值要高;同时得出一次冷轧压下率较小,二次冷轧压下率较大时,可使r值提高;如果冷轧总压下率适当提高,也可使r值提高;两次冷轧压下率均为75%时,r值可达3 2以上·通过对轧制试样的ODF织构分析,表明与实测r值一致·对显微组织观察表明,晶粒呈等轴状时有利于深冲性能·  相似文献   

15.
应用ANSYS有限元软件分析了热轧复合的不锈铜复合板在冷轧过程中的变形特性,界面结合强度的分析给定以及确定成卷可逆带张力冷轧时的最大道次压下量值。  相似文献   

16.
主要研究了道次压下率和轧制道次数对AZ31B扁锭坯大压下轧制所制备板材边裂以及微观组织的影响.轧制工艺为350℃下两道次或四道次大压下轧制.金相观察、边裂统计和XRD织构分析表明:当总压下率达到37%时,轧板开始出现边裂;并且裂纹深度随着压下率的增大而增加.随着压下率的增加,孪晶明显增多.当总压下率达到54%时,大部分区域已完成再结晶;进一步增大压下率,组织中出现变形局域化现象;当总压下率为82%,轧制道次增多时,边裂出现一定程度减弱,同时基面织构分布由双峰变为单峰.  相似文献   

17.
利用轧卡实验研究热轧低碳钢表面氧化铁皮在无酸洗冷轧过程中的断裂行为.结果表明,由于带钢在靠近辊缝处的弹性变形,带钢表面的氧化铁皮受拉应力作用发生断裂,裂纹垂直于轧制方向,越靠近辊缝裂纹密度越大.单道次轧制压下量小于16%时,氧化铁皮只发生断裂;压下量超过16%时,氧化铁皮开始出现脱落,当氧化铁皮受力超过其界面附着强度时,将发生氧化铁皮从带钢表面剥离和粉碎.同样的总压下量条件下,多轧制道次有利于保护氧化铁皮的完整性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号