首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
针对某异形承台大体积混凝土的水化热控制问题,提出了大体积混凝土的控制方法、并对其进行了实时跟踪监测分析与研究.其研究成果:承台混凝土浇注每层测点温度曲线规律呈现出一定的一致性:混凝土温度在浇筑后经历一个升温期后在冷却水管的作用下开始降温;承台混凝土浇注每层内表温差的变化都基本一致,而且随着气温的变化而上下起伏,且幅度比较大.  相似文献   

2.
大体积混凝土结构施工中,由于水泥水化热引起混凝土浇注内部温度和温度应力剧烈变化,由此而产生的温度应力是导致混凝土产生裂缝的主要原因。本文以金水沟特大桥为例针对裂缝成因对大体积混凝土温度裂缝控制的施工措施进行了讨论及分析。  相似文献   

3.
杨云杰 《科技资讯》2007,34(10):216-217
C40厚大体积混凝土浇筑,为避免混凝土产生有害的结构裂纹,在原材料选用与配合比设计,混凝土浇注施工控制,混凝土内部温度检测及表面养护、混凝土内部降温等方面采取了有效的措施。  相似文献   

4.
关于大体积混凝土变形裂缝控制措施   总被引:1,自引:0,他引:1  
李军 《山西科技》2011,(4):104-105,109
介绍大体积混凝土的概念、施工工艺、材料选用、浇注温度、内表温差,以及采取一些可行措施,避免大体积混凝土浇筑后产生变形裂缝。  相似文献   

5.
提出相变控温储能材料机敏控制混凝土结构温度裂缝技术途径.在混凝土浇注过程中将相变材料掺入使之与混凝土结构一体化,利用相变材料在特定温度范围的热效应控制混凝土内部温度场,从而机敏控制温度应力防止温度裂缝.通过自行设计的温度测试系统,对相变控温混凝土控温性能进行实测研究,结果表明:相变材料不但可以降低大体积混凝土的最高绝热温升值,而且可以降低大体积混凝土升温速度和降温速度,从根本上防止了大体积混凝土温度裂缝的出现.  相似文献   

6.
大体积混凝土温度裂缝控制的实例   总被引:1,自引:0,他引:1  
大体积混凝土结构施工中,由于水泥水化热引起混凝土浇注内部温度和温度应力剧烈变化,由此而产生的温度应力是导致混凝土产生裂缝的主要原因.文章针对工程实例,对大体积混凝土裂缝的产生原因进行分析,并通过理论计算以及从设计材料和施工等方面提出了一套优化的温控方案,在工程中取得了较好的效果.  相似文献   

7.
通过施工实例,详细介绍了大体积混凝土在浇筑前对温度收缩而产生的应力裂缝控制的计算方法,以及在原材料选择、混凝土的浇注和保温养护等方面应采取的温度控制措施,对一般的大体积混凝土基础施工都具有指导意义。  相似文献   

8.
由于冬季施工温度过低,在进行混凝土的浇注时为使混凝土很好的凝固以防被冻坏而降低强度,常会加入防冻剂防冻。本文对混凝土防冻剂的种类及使用注意事项进行了浅略分析。  相似文献   

9.
浇注式沥青混凝土级配设计   总被引:5,自引:0,他引:5  
针对浇注式沥青混凝土级配的设计问题,提出了两阶段设计方法.根据该方法设计了新的浇注式沥青混凝土级配,采用该级配制作的浇注式沥青混凝土,流动性能够满足施工要求,空隙率小于1%.对试件进行车辙试验、小梁弯曲试验、水稳定性试验和疲劳试验,结果表明根据两阶段设计方法设计的级配制作的浇注式沥青混凝土试件与传统级配浇注式沥青混凝土试件相比大大提高了高温稳定性,同时具有良好的低温抗裂性能、水稳定性和抗疲劳性能.因此,该设计方法是较好的浇注式沥青混凝土级配设计方法.  相似文献   

10.
应用光纤布拉格光栅温度传感器和应变传感器现场监测了混凝土挡土墙浇注早期的变形和温度变化情况。由于光纤布拉格光栅同时感应温度和变形,需要用布拉格光栅温度传感器对应变传感器进行温度补偿。监测结果表明,光纤布拉格光栅监测系统适用于混凝土早期性能的现场监测,通过与普通传感器监测结果对比,光纤传感器的结果更稳定,准确,且该监测系统可继续对混凝土结构的中长期性能进行实时监测。  相似文献   

11.
随着深部矿井和深长隧道的建设需要,混凝土结构面临着更加复杂的高地温环境。高温养护混凝土水化动力过程和力学特征规律与常温养护存在较大差异。概述了深部矿井和深长隧洞结构面临的高地温环境,分析了高温养护条件下混凝土水化动力过程,对高温养护混凝土力学性能演化机制和改善方法进行了综述;总结了不同高地温环境对衬砌结构黏结性能、温度场分布规律和受力特性的影响规律以及支护体系优化方法。认为高温养护混凝土水化反应机制不明确、温-湿条件耦合影响的非线性、工程研究领域和性能指标的单一性是高温养护混凝土性能演化表征及优化改性研究存在的主要问题。应加强高温养护条件下混凝土水化动力学模型的研究,建立温-湿度耦合养护条件下混凝土性能预测模型,拓展高温养护混凝土应用领域和强度等级的研究,以便更好地为高地温环境深地工程混凝土结构设计和应用提供指导。  相似文献   

12.
浇筑温度对大体积混凝土温度应力的影响   总被引:2,自引:0,他引:2  
从大体积混凝土的温度应力对结构开裂的影响出发,分析了混凝土的浇筑温度对其施工期温度应力的影响。根据大体积混凝土在施工期裂缝发生的机理与其施工期的温度应力性能,利用数值分析方法,研究了大体积混凝土在浇筑温度变化时,大体积混凝土的温度应力对结构开裂的影响。结果表明:当大体积混凝土的浇筑温度升高时,水泥的水化速度加快,混凝土内部最高温度出现的时间提前;结构的第一主应力呈线性增大,其值为浇筑温度每提高1℃,结构的第一主应力增大2.47%;大体积混凝土的降温差和内外温差随着浇筑温度的提高而增加,且最大降温差和最大内外温差也随着浇筑温度的增大使其发生的时间有所提前。  相似文献   

13.
郑丹  张洪荣  刘莉 《科学技术与工程》2020,20(23):9603-9608
在高温作用下,混凝土内部会发生物理和化学反应,引起材料的力学性能改变,影响混凝土的安全性能。文章对混凝土在不同高温受热温度和受热时间阶段下的力学性能进行测量试验,研究了混凝土高温损伤下超声波波速和非线性超声系数的演化规律,并讨论了非线性超声方法的适用范围。试验结果表明,当混凝土的高温损伤较小时,非线性超声检测对混凝土材料的高温损伤更加敏感,可以用来更为准确地评估混凝土结构在高温下较低损伤情况。  相似文献   

14.
采用等效时间成熟函数反映不同温度历程下混凝土的水化反应状态,对考虑混凝土水化度的水管冷却等效热传导进行了研究,推导了基于等效时间的混凝土水管冷却等效热传导有阴无计算公式,研制了相关的有限元程序.在计算有热源水管冷却问题的混凝土平均温度时,需要存储各高斯点、各增量步等效时间增量.以获得时间增量区间对应的等效时间增量区间,然后计算考虑混凝土水化度时,该时间区间内的水化热温升增毓.针对采取骨料预冷和通水冷却等温控措施的某实际混凝土工程,分析在高温季节浇筑的混凝土块的温度和徐变应力,结果表明温度变化范围在12-27℃,考虑混凝土水化度时计算的浇筑块温度最大增高1.022℃,但徐变应力差民较小。  相似文献   

15.
大体积混凝土因早期水化热引起的温度场 会导致开裂, 影响结构安全和正常使用, 其中混凝土热学参数的准确性会直接影响混凝土温度场计算的准确性. 从胶凝材料水化反应机理出发, 基于化学反应动力学原理及不同矿物组成的水泥水化热实验数据, 提出了一种考虑粉煤灰掺入和温度影响的混凝土水化放热模型. 该模型可以准确地反映混凝土水化放热量及温升随龄期的变化, 且与实测值吻合良好.  相似文献   

16.
针对内埋热源混凝土冬季养护控温方法,研究热源对混凝土温度历程的作用.基于成熟度概念,研究养护温度、龄期对混凝土水化程度及热学性能发展的影响;依据抗压强度预测公式,预先设计温度历程;基于热力学第一定律,建立瞬时热能方程,构建温度历程精确控制方法,并通过试验验证.结果表明:该方法能够用于混凝土升温速度的准确控制,维持稳定阶段温度,以及保证混凝土降温速度,实现混凝土温度历程及强度的精准控制.  相似文献   

17.
筏板基础大体积混凝土施工技术   总被引:1,自引:0,他引:1  
结合工程实例,将大体积混凝土施工温度、温度差、温度应力控制的计算分析方法,应用到筏板基础混凝土施工中,有效控制了温度应力和收缩应力引起的裂缝,保证了混凝土质量。  相似文献   

18.
文章从混凝土结构的温度分布和温度效应的基本概念出发,分析了混凝土整体结构产生温度应力的原因,提出了ANSYS分析结构温度作用效应的材料与温度参数.针对某实际工程,应用ANSYS软件对混凝土结构温度作用效应进行了仿真模拟,并进行了探讨.  相似文献   

19.
通过对某大型混凝土箱梁桥温度场的观测,分析了混凝土箱梁在日照辐射作用下的温度变化情况和竖向温度梯度的分布规律,发现日照辐射作用下混凝土箱梁竖向温度梯度模式近似服从指数分布。建立了基于气象参数的混凝土箱梁日照温度场有限元模型,并验证了该模型的准确性。最后,计算了50年一遇气象参数条件下混凝土箱梁竖向温度梯度分布情况,结果表明,极端条件下混凝土箱梁竖向最大温差可达18.5℃。  相似文献   

20.
以过火温度和粉刷层厚度等参数为主要研究对象,通过27个带混合砂浆粉刷层的混凝土立方体试块高温作用后的抗压性能试验,并与其热-结构耦合数值计算分析的结果进行对比.研究结果表明:高温作用后混凝土的损伤程度与过火温度、粉刷条件、恒温持时和静置时间等有关;过火温度越高,损伤越严重,抗压强度越低;粉刷层对遭受火灾作用的混凝土结构有较好的保护作用,能有效减少外部能量输入结构;四面受火混凝土试块的温度分布呈环形分布由表面向内部温度逐渐降低,且试块截面4个角部温度最高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号