首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 924 毫秒
1.
2.
3.
The abundance and dynamics of copy number variants (CNVs) in mammalian genomes poses new challenges in the identification of their impact on natural and disease phenotypes. We used computational and experimental methods to catalog CNVs in rat and found that they share important functional characteristics with those in human. In addition, 113 one-to-one orthologous genes overlap CNVs in both human and rat, 80 of which are implicated in human disease. CNVs are nonrandomly distributed throughout the genome. Chromosome 18 is a cold spot for CNVs as well as evolutionary rearrangements and segmental duplications, suggesting stringent selective mechanisms underlying CNV genesis or maintenance. By exploiting gene expression data available for rat recombinant inbred lines, we established the functional relationship of CNVs underlying 22 expression quantitative trait loci. These characteristics make the rat an excellent model for studying phenotypic effects of structural variation in relation to human complex traits and disease.  相似文献   

4.
5.
High-resolution mapping of quantitative trait loci in outbred mice   总被引:21,自引:0,他引:21  
Screening the whole genome of a cross between two inbred animal strains has proved to be a powerful method for detecting genetic loci underlying quantitative behavioural traits, but the level of resolution offered by quantitative trait loci (QTL) mapping is still too coarse to permit molecular cloning of the genetic determinants. To achieve high-resolution mapping, we used an outbred stock of mice for which the entire genealogy is known. The heterogeneous stock (HS) was established 30 years ago from an eight-way cross of C57BL/6, BALB/c, RIII, AKR, DBA/2, I, A/J and C3H inbred mouse strains. At the time of the experiment reported here, the HS mice were at generation 58, theoretically offering at least a 30-fold increase in resolution for QTL mapping compared with a backcross or an F2 intercross. Using the HS mice we have mapped a QTL influencing a psychological trait in mice to a 0.8-cM interval on chromosome 1. This method allows simultaneous fine mapping of multiple QTLs, as shown by our report of a second QTL on chromosome 12. The high resolution possible with this approach makes QTLs accessible to positional cloning.  相似文献   

6.
Identifying the genetic variation underlying quantitative trait loci remains problematic. Consequently, our molecular understanding of genetically complex, quantitative traits is limited. To address this issue directly, we mapped three quantitative trait loci that control yeast sporulation efficiency to single-nucleotide resolution in a noncoding regulatory region (RME1) and to two missense mutations (TAO3 and MKT1). For each quantitative trait locus, the responsible polymorphism is rare among a diverse set of 13 yeast strains, suggestive of genetic heterogeneity in the control of yeast sporulation. Additionally, under optimal conditions, we reconstituted approximately 92% of the sporulation efficiency difference between the two genetically distinct parents by engineering three nucleotide changes in the appropriate yeast genome. Our results provide the highest resolution to date of the molecular basis of a quantitative trait, showing that the interaction of a few genetic variants can have a profound phenotypic effect.  相似文献   

7.
To identify renally expressed genes that influence risk for hypertension, we integrated expression quantitative trait locus (QTL) analysis of the kidney with genome-wide correlation analysis of renal expression profiles and blood pressure in recombinant inbred strains derived from the spontaneously hypertensive rat (SHR). This strategy, together with renal transplantation studies in SHR progenitor, transgenic and congenic strains, identified deficient renal expression of Cd36 encoding fatty acid translocase as a genetically determined risk factor for spontaneous hypertension.  相似文献   

8.
Analysing complex genetic traits with chromosome substitution strains   总被引:24,自引:0,他引:24  
Many valuable animal models of human disease are known and new models are continually being generated in existing inbred strains,. Some disease models are simple mendelian traits, but most have a polygenic basis. The current approach to identifying quantitative trait loci (QTLs) that underlie such traits is to localize them in crosses, construct congenic strains carrying individual QTLs, and finally map and clone the genes. This process is time-consuming and expensive, requiring the genotyping of large crosses and many generations of breeding. Here we describe a different approach in which a panel of chromosome substitution strains (CSSs) is used for QTL mapping. Each of these strains has a single chromosome from the donor strain substituting for the corresponding chromosome in the host strain. We discuss the construction, applications and advantages of CSSs compared with conventional crosses for detecting and analysing QTLs, including those that have weak phenotypic effects.  相似文献   

9.
The laboratory rat is one of the most extensively studied model organisms. Inbred laboratory rat strains originated from limited Rattus norvegicus founder populations, and the inherited genetic variation provides an excellent resource for the correlation of genotype to phenotype. Here, we report a survey of genetic variation based on almost 3 million newly identified SNPs. We obtained accurate and complete genotypes for a subset of 20,238 SNPs across 167 distinct inbred rat strains, two rat recombinant inbred panels and an F2 intercross. Using 81% of these SNPs, we constructed high-density genetic maps, creating a large dataset of fully characterized SNPs for disease gene mapping. Our data characterize the population structure and illustrate the degree of linkage disequilibrium. We provide a detailed SNP map and demonstrate its utility for mapping of quantitative trait loci. This community resource is openly available and augments the genetic tools for this workhorse of physiological studies.  相似文献   

10.
11.
Liu P  Wang Y  Vikis H  Maciag A  Wang D  Lu Y  Liu Y  You M 《Nature genetics》2006,38(8):888-895
We performed a whole-genome association analysis of lung tumor susceptibility using dense SNP maps ( approximately 1 SNP per 20 kb) in inbred mice. We reproduced the pulmonary adenoma susceptibility 1 (Pas1) locus identified in previous linkage studies and further narrowed this quantitative trait locus (QTL) to a region of less than 0.5 Mb in which at least two genes, Kras2 (Kirsten rat sarcoma oncogene 2) and Casc1 (cancer susceptibility candidate 1; also known as Las1), are strong candidates. Casc1 knockout mouse tumor bioassays showed that Casc1-deficient mice were susceptible to chemical induction of lung tumors. We also found three more genetic loci for lung adenoma development. Analysis of one of these candidate loci identified a previously uncharacterized gene Lasc1, bearing a nonsynonymous substitution (D102E). We found that the Lasc1 Glu102 allele preferentially promotes lung tumor cell growth. Our findings demonstrate the prospects for using dense SNP maps in laboratory mice to refine previous QTL regions and identify genetic determinants of complex traits.  相似文献   

12.
Maize is both an exciting model organism in plant genetics and also the most important crop worldwide for food, animal feed and bioenergy production. Recent genome-wide association and metabolic profiling studies aimed to resolve quantitative traits to their causal genetic loci and key metabolic regulators. Here we present a complementary approach that exploits large-scale genomic and metabolic information to predict complex, highly polygenic traits in hybrid testcrosses. We crossed 285 diverse Dent inbred lines from worldwide sources with two testers and predicted their combining abilities for seven biomass- and bioenergy-related traits using 56,110 SNPs and 130 metabolites. Whole-genome and metabolic prediction models were built by fitting effects for all SNPs or metabolites. Prediction accuracies ranged from 0.72 to 0.81 for SNPs and from 0.60 to 0.80 for metabolites, allowing a reliable screening of large collections of diverse inbred lines for their potential to create superior hybrids.  相似文献   

13.
Nested association mapping (NAM) offers power to resolve complex, quantitative traits to their causal loci. The maize NAM population, consisting of 5,000 recombinant inbred lines (RILs) from 25 families representing the global diversity of maize, was evaluated for resistance to southern leaf blight (SLB) disease. Joint-linkage analysis identified 32 quantitative trait loci (QTLs) with predominantly small, additive effects on SLB resistance. Genome-wide association tests of maize HapMap SNPs were conducted by imputing founder SNP genotypes onto the NAM RILs. SNPs both within and outside of QTL intervals were associated with variation for SLB resistance. Many of these SNPs were within or near sequences homologous to genes previously shown to be involved in plant disease resistance. Limited linkage disequilibrium was observed around some SNPs associated with SLB resistance, indicating that the maize NAM population enables high-resolution mapping of some genome regions.  相似文献   

14.
15.
16.
Difficulties in fine-mapping quantitative trait loci (QTLs) are a major impediment to progress in the molecular dissection of complex traits in mice. Here we show that genome-wide high-resolution mapping of multiple phenotypes can be achieved using a stock of genetically heterogeneous mice. We developed a conservative and robust bootstrap analysis to map 843 QTLs with an average 95% confidence interval of 2.8 Mb. The QTLs contribute to variation in 97 traits, including models of human disease (asthma, type 2 diabetes mellitus, obesity and anxiety) as well as immunological, biochemical and hematological phenotypes. The genetic architecture of almost all phenotypes was complex, with many loci each contributing a small proportion to the total variance. Our data set, freely available at http://gscan.well.ox.ac.uk, provides an entry point to the functional characterization of genes involved in many complex traits.  相似文献   

17.
We report mapping of a quantitative trait locus (QTL) with a major effect on bovine stature to a ~780-kb interval using a Hidden Markov Model-based approach that simultaneously exploits linkage and linkage disequilibrium. We re-sequenced the interval in six sires with known QTL genotype and identified 13 clustered candidate quantitative trait nucleotides (QTNs) out of >9,572 discovered variants. We eliminated five candidate QTNs by studying the phenotypic effect of a recombinant haplotype identified in a breed diversity panel. We show that the QTL influences fetal expression of seven of the nine genes mapping to the ~780-kb interval. We further show that two of the eight candidate QTNs, mapping to the PLAG1-CHCHD7 intergenic region, influence bidirectional promoter strength and affect binding of nuclear factors. By performing expression QTL analyses, we identified a splice site variant in CHCHD7 and exploited this naturally occurring null allele to exclude CHCHD7 as single causative gene.  相似文献   

18.
Most agronomic traits of importance, whether physiological (such as nutrient use efficiency) or developmental (such as flowering time), are controlled simultaneously by multiple genes and their interactions with the environment. Here, we show that variation in sulfate content between wild Arabidopsis thaliana accessions Bay-0 and Shahdara is controlled by a major quantitative trait locus that results in a strong interaction with nitrogen availability in the soil. Combining genetic and biochemical results and using a candidate gene approach, we have cloned the underlying gene, showing how a single-amino acid substitution in a key enzyme of the assimilatory sulfate reduction pathway, adenosine 5'-phosphosulfate reductase, is responsible for a decrease in enzyme activity, leading to sulfate accumulation in the plant. This work illustrates the potential of natural variation as a source of new alleles of known genes, which can aid in the study of gene function and metabolic pathway regulation. Our new insights on sulfate assimilation may have an impact on sulfur fertilizer use and stress defense improvement.  相似文献   

19.
Many quantitative trait loci (QTLs) contributing to genetically complex conditions have been discovered, but few causative genes have been identified. This is mainly due to the large size of QTLs and the subtle connection between genotype and quantitative phenotype associated with these conditions. Transgenic mice have been successfully used to analyse well-characterized genes suspected of contributing to quantitative traits. Although this approach is powerful for examining one gene at a time, it can be impractical for surveying the large genomic intervals containing many genes that are typically associated with QTLs. To screen for genes contributing to an asthma QTL mapped to human chromosome 5q3 (refs 6,7), we characterized a panel of large-insert 5q31 transgenics based on studies demonstrating that altering gene dosage frequently affects quantitative phenotypes normally influenced by that gene. This panel of human YAC transgenics, propagating a 1-Mb interval of chromosome 5q31 containing 6 cytokine genes and 17 partially characterized genes, was screened for quantitative changes in several asthma-associated phenotypes. Multiple independent transgenic lines with altered IgE response to antigen treatment shared a 180-kb region containing 5 genes, including those encoding human interleukin 4 (IL4) and interleukin 13 (IL13 ), which induce IgE class switching in B cells. Further analysis of these mice and mice transgenic for mouse Il4 and Il13 demonstrated that moderate changes in Il4 and Il13 expression affect asthma-associated phenotypes in vivo. This functional screen of large-insert transgenics enabled us to identify genes that influence the QTL phenotype in vivo.  相似文献   

20.
We mapped regulatory loci for nearly all protein-coding genes in mammals using comparative genomic hybridization and expression array measurements from a panel of mouse-hamster radiation hybrid cell lines. The large number of breaks in the mouse chromosomes and the dense genotyping of the panel allowed extremely sharp mapping of loci. As the regulatory loci result from extra gene dosage, we call them copy number expression quantitative trait loci, or ceQTLs. The -2log10P support interval for the ceQTLs was <150 kb, containing an average of <2-3 genes. We identified 29,769 trans ceQTLs with -log10P > 4, including 13 hotspots each regulating >100 genes in trans. Further, this work identifies 2,761 trans ceQTLs harboring no known genes, and provides evidence for a mode of gene expression autoregulation specific to the X chromosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号