首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 370 毫秒
1.
Induced development of a new plant organ in response to rhizobia is the most prominent manifestation of legume root-nodule symbiosis with nitrogen-fixing bacteria. Here we show that the complex root-nodule organogenic programme can be genetically deregulated to trigger de novo nodule formation in the absence of rhizobia or exogenous rhizobial signals. In an ethylmethane sulphonate-induced snf1 (spontaneous nodule formation) mutant of Lotus japonicus, a single amino-acid replacement in a Ca2+/calmodulin-dependent protein kinase (CCaMK) is sufficient to turn fully differentiated root cortical cells into meristematic founder cells of root nodule primordia. These spontaneous nodules are genuine nodules with an ontogeny similar to that of rhizobial-induced root nodules, corroborating previous physiological studies. Using two receptor-deficient genetic backgrounds we provide evidence for a developmentally integrated spontaneous nodulation process that is independent of lipochitin-oligosaccharide signal perception and oscillations in Ca2+ second messenger levels. Our results reveal a key regulatory position of CCaMK upstream of all components required for cell-cycle activation, and a phenotypically divergent series of mutant alleles demonstrates positive and negative regulation of the process.  相似文献   

2.
Alpha-neurexins couple Ca2+ channels to synaptic vesicle exocytosis   总被引:1,自引:0,他引:1  
Synapses are specialized intercellular junctions in which cell adhesion molecules connect the presynaptic machinery for neurotransmitter release to the postsynaptic machinery for receptor signalling. Neurotransmitter release requires the presynaptic co-assembly of Ca2+ channels with the secretory apparatus, but little is known about how synaptic components are organized. Alpha-neurexins, a family of >1,000 presynaptic cell-surface proteins encoded by three genes, link the pre- and postsynaptic compartments of synapses by binding extracellularly to postsynaptic cell adhesion molecules and intracellularly to presynaptic PDZ domain proteins. Using triple-knockout mice, we show that alpha-neurexins are not required for synapse formation, but are essential for Ca2+-triggered neurotransmitter release. Neurotransmitter release is impaired because synaptic Ca2+ channel function is markedly reduced, although the number of cell-surface Ca2+ channels appears normal. These data suggest that alpha-neurexins organize presynaptic terminals by functionally coupling Ca2+ channels to the presynaptic machinery.  相似文献   

3.
M Wolf  H LeVine  W S May  P Cuatrecasas  N Sahyoun 《Nature》1985,317(6037):546-549
The activation of protein kinase C by diacylglycerol and by tumour promoters has implicated this enzyme in transmembrane signalling and in the regulation of the cell cycle. In vitro studies revealed that catalytic activity requires the presence of calcium and phospholipids with a preference for phosphatidylserine. Diacylglycerol and tumour promoters such as phorbol esters bind to the enzyme, leading to its activation while sharply increasing its affinity for Ca2+ and phospholipid. Addition of diacylglycerol analogues or phorbol esters to intact cells results in the phosphorylation of specific polypeptides. Several cellular processes, including hormone and neurotransmitter release and receptor down-regulation, are modulated by the activation of protein kinase C, while phorbol ester-induced stimulation of the enzyme in whole cells has been associated with its translocation from the cytoplasm to the plasma membrane. Moreover, the use of Ca2+ ionophores has revealed an apparent synergism between Ca2+ mobilization and protein kinase C activation. This synergism has recently also been found to apply to receptor down-regulation (ref. 23 and accompanying paper). Here we describe a reconstitution system in which intracellular translocation of protein kinase C and the synergism between Ca2+ and enzyme activators can be studied. The results suggest a rationale for concomitant Ca2+ mobilization and diacylglycerol formation in response to some hormones, neurotransmitters and growth factors.  相似文献   

4.
Influx of Ca2-via Ca2+ channels is the major step triggering exocytosis of pituitary somatotropes to release growth hormone (GH). Voltage-gated Ca2+ and K+ channels, the primary determinants of the influx of Ca2+ in somatotropes, are regulated by GH-releasing hornone (GHRH) and somatostatin (SRIF) through G protein-coupled signalling systems. Using whole-cell patch-clamp techniques, the changes of the Ca2+ and K+ currents in primary cultured somatotropes were recorded and signalling systems were studied using pharmacological reagents and intracellular dialysis of non-permeable molecules including antibodies and antisense oligonucleotides. GHRH increased both L-and T-types Ca2+ currents and decreased transient (I4) and delayed rectified (Ik) K+ currents. The increase in Ca2+ currents by GHRH was mediated by cAMP/protein kinase A system but the decrease in K+ currents required normal function of protein kinase C system. The GHRH-induced alteration of Ca2+ and K+ currents augments the influx of Ca2+ , leading to an increase in the [ Ca2+ ]I and the GH secretion. In contrary, a significant reduction in Ca2+ currents and increase in K currents were obtained in response to SRIF. The ion channel response to SRIF was demonstrated as a membrane delimited pathway and can be recorded by classic whole-cell configuration, Intracellular dialysis of anti-αi3 antibodies attenuated the increase in K + currents by SRIF whereas anti-αo antibodies blocked the reduction in the Ca2+ current by SRIF. Dialysis of antisense oligonucleotides specific for αo2 sub-units also attenuated the inhibition of SRIF on the Ca2+current. The Gi3 protein mediated the increase in K + currents and the Go2 protein mediated the reduction in the Ca2 +current by SRIF. The SRIF-induced alteration of Ca2 + and K + currents diminished the influx of Ca2+ , leading to a decrease in the [ Ca2+ ]I and the GH secretion. It is therefore concluded that multiple signalling systems are employed in the ion channel response to GHRH or SRIF in somatotropes, which leads to an increase or decrease in the GH secretion.  相似文献   

5.
6.
T J O'Dell  E R Kandel  S G Grant 《Nature》1991,353(6344):558-560
Long-term potentiation (LTP) in the hippocampus is thought to contribute to memory formation. In the Ca1 region, LTP requires the NMDA (N-methyl-D-aspartate) receptor-dependent influx of Ca2+ and activation of serine and threonine protein kinases. Because of the high amount of protein tyrosine kinases in hippocampus and cerebellum, two regions implicated in learning and memory, we examined the possible additional requirement of tyrosine kinase activity in LTP. We first examined the specificity in brain of five inhibitors of tyrosine kinase and found that two of them, lavendustin A and genistein, showed substantially greater specificity for tyrosine kinase from hippocampus than for three serine-threonine kinases: protein kinase A, protein kinase C, and Ca2+/calmodulin kinase II. Lavendustin A and genistein selectively blocked the induction of LTP when applied in the bath or injected into the postsynaptic cell. By contrast, the inhibitors had no effect on the established LTP, on normal synaptic transmission, or on the neurotransmitter actions attributable to the actions of protein kinase A or protein kinase C. These data suggest that tyrosine kinase activity could be required postsynaptically for long-term synaptic plasticity in the hippocampus. As Ca2+ calmodulin kinase II or protein kinase C seem also to be required, the tyrosine kinases could participate postsynaptically in a kinase network together with serine and threonine kinases.  相似文献   

7.
R Sagi-Eisenberg  H Lieman  I Pecht 《Nature》1985,313(5997):59-60
It has been proposed that protein kinase C mediates cellular responses evoked by external stimuli, leading to alterations in internal free calcium concentrations. We have shown previously that histamine-secreting rat basophilic leukaemia cells (RBL-2H3), which degranulate on aggregation of the receptors for immunoglobulin IgE, contain a Ca2+- and phospholipid-dependent protein kinase (kinase C). The partially purified enzyme is activated directly by the tumour-promoting phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). In intact RBL cells, TPA potentiates histamine release induced by the Ca2+-ionophore A23187 (similar to the synergy reported for platelets, neutrophils and rat peritoneal mast cells). Although TPA at concentrations below 15 nM synergizes with the antigen, higher TPA concentrations inhibit secretion. This selective inhibition suggested that kinase C is involved in both the activation and termination of the secretory process. To examine this possibility, we have determined the effect of TPA on changes in free cytosolic Ca2+ concentration during antigen-induced release. We report here that TPA completely blocks the increase in Ca2+ concentration induced by antigen. Our results strongly suggest that protein kinase C is involved in the regulation of receptor-dependent Ca2+ signalling.  相似文献   

8.
In legumes, root nodule organogenesis is activated in response to morphogenic lipochitin oligosaccharides that are synthesized by bacteria, commonly known as rhizobia. Successful symbiotic interaction results in the formation of highly specialized organs called root nodules, which provide a unique environment for symbiotic nitrogen fixation. In wild-type plants the number of nodules is regulated by a signalling mechanism integrating environmental and developmental cues to arrest most rhizobial infections within the susceptible zone of the root. Furthermore, a feedback mechanism controls the temporal and spatial susceptibility to infection of the root system. This mechanism is referred to as autoregulation of nodulation, as earlier nodulation events inhibit nodulation of younger root tissues. Lotus japonicus plants homozygous for a mutation in the hypernodulation aberrant root (har1) locus escape this regulation and form an excessive number of nodules. Here we report the molecular cloning and expression analysis of the HAR1 gene and the pea orthologue, Pisum sativum, SYM29. HAR1 encodes a putative serine/threonine receptor kinase, which is required for shoot-controlled regulation of root growth, nodule number, and for nitrate sensitivity of symbiotic development.  相似文献   

9.
DeMaria CD  Soong TW  Alseikhan BA  Alvania RS  Yue DT 《Nature》2001,411(6836):484-489
Acute modulation of P/Q-type (alpha1A) calcium channels by neuronal activity-dependent changes in intracellular Ca2+ concentration may contribute to short-term synaptic plasticity, potentially enriching the neurocomputational capabilities of the brain. An unconventional mechanism for such channel modulation has been proposed in which calmodulin (CaM) may exert two opposing effects on individual channels, initially promoting ('facilitation') and then inhibiting ('inactivation') channel opening. Here we report that such dual regulation arises from surprising Ca2+-transduction capabilities of CaM. First, although facilitation and inactivation are two competing processes, both require Ca2+-CaM binding to a single 'IQ-like' domain on the carboxy tail of alpha1A; a previously identified 'CBD' CaM-binding site has no detectable role. Second, expression of a CaM mutant with impairment of all four of its Ca2+-binding sites (CaM1234) eliminates both forms of modulation. This result confirms that CaM is the Ca2+ sensor for channel regulation, and indicates that CaM may associate with the channel even before local Ca2+ concentration rises. Finally, the bifunctional capability of CaM arises from bifurcation of Ca2+ signalling by the lobes of CaM: Ca2+ binding to the amino-terminal lobe selectively initiates channel inactivation, whereas Ca2+ sensing by the carboxy-terminal lobe induces facilitation. Such lobe-specific detection provides a compact means to decode local Ca2+ signals in two ways, and to separately initiate distinct actions on a single molecular complex.  相似文献   

10.
一氧化氮(NO)是植物体内重要的信号分子,生物和非生物的刺激都能使NO与胞内第2信使Ca2+和蛋白激酶产生相互作用.以动物细胞NO - Ca2+信号途径为基础,列举了植物NO信号途径中Ca2+和多种蛋白激酶的可能作用,论述了植物细胞中NO,Ca2+和蛋白激酶的信号交叉.  相似文献   

11.
Sinorhizobium meliloti nifA gene is required for the expression of a bunch of nif and fix genes. Here, we report its pleiotropic effects on the nodule formation. Compared with wild type strain, nifA mutant sig- nificantly reduced nodule suppression rate in split-root system. The plants inoculated with mutant strain produced lower amount of daidzein and less necrotic cells on their roots. In addition, the defense genes failed to be evoked by nifA mutant at the early nodulation stage. These findings indicated that host defense response was one of the mechanisms mediated by nifA gene to regulate nodule formation during symbiosis. Even though nifA mutant could increase the number of nodules in host plant, it synthesized lower Nod factors than wild type. This suggested that nifA gene mediated multiple and diverse instances in nodulation formation.  相似文献   

12.
The immune system consists of two evolutionarily different but closely related responses, innate immunity and adaptive immunity. Each of these responses has characteristic receptors-Toll-like receptors (TLRs) for innate immunity and antigen-specific receptors for adaptive immunity. Here we show that the caspase recruitment domain (CARD)-containing serine/threonine kinase Rip2 (also known as RICK, CARDIAK, CCK and Ripk2) transduces signals from receptors of both immune responses. Rip2 was recruited to TLR2 signalling complexes after ligand stimulation. Moreover, cytokine production in Rip2-deficient cells was reduced on stimulation of TLRs with lipopolysaccharide, peptidoglycan and double-stranded RNA, but not with bacterial DNA, indicating that Rip2 is downstream of TLR2/3/4 but not TLR9. Rip2-deficient cells were also hyporesponsive to signalling through interleukin (IL)-1 and IL-18 receptors, and deficient for signalling through Nod proteins-molecules also implicated in the innate immune response. Furthermore, Rip2-deficient T cells showed severely reduced NF-kappaB activation, IL-2 production and proliferation on T-cell-receptor (TCR) engagement, and impaired differentiation to T-helper subtype 1 (TH1) cells, indicating that Rip2 is required for optimal TCR signalling and T-cell differentiation. Rip2 is therefore a signal transducer and integrator of signals for both the innate and adaptive immune systems.  相似文献   

13.
W S May  N Sahyoun  M Wolf  P Cuatrecasas 《Nature》1985,317(6037):549-551
Phorbol esters are potent tumour-promoting agents that exert pleiotropic effects on cells. Among these are the control of growth, stimulation of release of stored bioactive constituents and regulation of growth-factor surface receptors. Phorbol esters bind to and activate protein kinase C, leading to the phosphorylation of specific protein substrates presumed to be necessary for eliciting the full response. Strong evidence exists that specific binding of tumour promoter occurs at the membrane level in intact cells, resulting in activation of protein kinase C. Recent evidence concerning the release of bioactive constituents from platelets and neutrophils has linked agonist-induced protein kinase C activation and Ca2+ mobilization in a synergistic mechanism. Here we present a novel model of synergism between Ca2+ and phorbol esters that leads to transferrin receptor phosphorylation and down-regulation in HL-60 human leukaemic cells. Raising intracellular Ca2+, although ineffective by itself, increases the potency and rate of action of phorbol ester for activating protein kinase C and mediating transferrin receptor phosphorylation and down-regulation. We propose a molecular model in which increased intracellular Ca2+ recruits protein kinase C to the plasma membrane, thus "priming' the system for activation by phorbol ester.  相似文献   

14.
Cystic fibrosis is associated with defective regulation of apical membrane chloride channels in airway epithelial cells. These channels in normal cells are activated by cyclic AMP-dependent protein kinase and protein kinase C. In cystic fibrosis these kinases fail to activate otherwise normal Cl- channels. But Cl- flux in cystic fibrosis cells, as in normal cells, can be activated by raising intracellular Ca2+ (refs 5-10). We report here whole-cell patch clamp studies of normal and cystic fibrosis-derived airway epithelial cells showing that Cl- channel activation by Ca2+ is mediated by multifunctional Ca2+/calmodulin-dependent protein kinase. We find that intracellular application of activated kinase and ATP activates a Cl- current similar to that activated by a Ca2+ ionophore, that peptide inhibitors of either the kinase or calmodulin block Ca2(+)-dependent activation of Cl- channels, and that a peptide inhibitor of protein kinase C does not block Ca2(+)-dependent activation. Ca2+/calmodulin activation of Cl- channels presents a pathway with therapeutic potential for circumventing defective regulation of Cl- channels in cystic fibrosis.  相似文献   

15.
H Higashida  D A Brown 《Nature》1986,323(6086):333-335
Hydrolysis of the membrane phospholipid phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) produces two prospective intracellular messengers: inositol 1,4,5-trisphosphate (InsP3), which releases Ca2+ from intracellular stores; and diacylglycerol (DG), which activates protein kinase C. Here we show how the formation of these two substances triggered by one external messenger, bradykinin, leads to the appearance of two different sequential membrane conductance changes in the neurone-like NG108-15 neuroblastoma-glioma hybrid cell line. In these cells bradykinin rapidly hydrolyses PtdIns(4,5)P2 to InsP3 and DG, raises intracellular Ca2+ and hyperpolarizes then depolarizes the cell membrane. By voltage-clamp recording we show that the hyperpolarization results from the activation pharmacologically-identifiable species of Ca2+-dependent K+ current. This is also activated by intracellular injections of Ca2+ or InsP3 so may be attributed to the formation and action of InsP3. The subsequent depolarization results primarily from the inhibition of a different, voltage-dependent K+ current, the M-current that is also inhibited by DG activators. Hence we describe for the first time a dual, time-dependent role for these two intracellular messengers in the control of neuronal signalling by a peptide.  相似文献   

16.
Cell signalling requires efficient Ca2+ mobilization from intracellular stores through Ca2+ release channels, as well as predicted counter-movement of ions across the sarcoplasmic/endoplasmic reticulum membrane to balance the transient negative potential generated by Ca2+ release. Ca2+ release channels were cloned more than 15 years ago, whereas the molecular identity of putative counter-ion channels remains unknown. Here we report two TRIC (trimeric intracellular cation) channel subtypes that are differentially expressed on intracellular stores in animal cell types. TRIC subtypes contain three proposed transmembrane segments, and form homo-trimers with a bullet-like structure. Electrophysiological measurements with purified TRIC preparations identify a monovalent cation-selective channel. In TRIC-knockout mice suffering embryonic cardiac failure, mutant cardiac myocytes show severe dysfunction in intracellular Ca2+ handling. The TRIC-deficient skeletal muscle sarcoplasmic reticulum shows reduced K+ permeability, as well as altered Ca2+ 'spark' signalling and voltage-induced Ca2+ release. Therefore, TRIC channels are likely to act as counter-ion channels that function in synchronization with Ca2+ release from intracellular stores.  相似文献   

17.
Pandur P  Läsche M  Eisenberg LM  Kühl M 《Nature》2002,418(6898):636-641
Formation of the vertebrate heart requires a complex interplay of several temporally regulated signalling cascades. In Xenopus laevis, cardiac specification occurs during gastrulation and requires signals from the dorsal lip and underlying endoderm. Among known Xenopus Wnt genes, only Wnt-11 shows a spatiotemporal pattern of expression that correlates with cardiac specification, which indicates that Wnt-11 may be involved in heart development. Here we show, through loss- and gain-of-function experiments, that XWnt-11 is required for heart formation in Xenopus embryos and is sufficient to induce a contractile phenotype in embryonic explants. Treating the mouse embryonic carcinoma stem cell line P19 with murine Wnt-11 conditioned medium triggers cardiogenesis, which indicates that the function of Wnt-11 in heart development has been conserved in higher vertebrates. XWnt-11 mediates this effect by non-canonical Wnt signalling, which is independent of beta-catenin and involves protein kinase C and Jun amino-terminal kinase. Our results indicate that the cardiac developmental program requires non-canonical Wnt signal transduction.  相似文献   

18.
Li Y  Jia YC  Cui K  Li N  Zheng ZY  Wang YZ  Yuan XB 《Nature》2005,434(7035):894-898
Brain-derived neurotrophic factor (BDNF) is known to promote neuronal survival and differentiation and to guide axon extension both in vitro and in vivo. The BDNF-induced chemo-attraction of axonal growth cones requires Ca2+ signalling, but how Ca2+ is regulated by BDNF at the growth cone remains largely unclear. Extracellular application of BDNF triggers membrane currents resembling those through TRPC (transient receptor potential canonical) channels in rat pontine neurons and in Xenopus spinal neurons. Here, we report that in cultured cerebellar granule cells, TRPC channels contribute to the BDNF-induced elevation of Ca2+ at the growth cone and are required for BDNF-induced chemo-attractive turning. Several members of the TRPC family are highly expressed in these neurons, and both Ca2+ elevation and growth-cone turning induced by BDNF are abolished by pharmacological inhibition of TRPC channels, overexpression of a dominant-negative form of TRPC3 or TRPC6, or downregulation of TRPC3 expression via short interfering RNA. Thus, TRPC channel activity is essential for nerve-growth-cone guidance by BDNF.  相似文献   

19.
20.
Cytosolic free calcium ([Ca2+]cyt) is a ubiquitous signalling component in plant cells. Numerous stimuli trigger sustained or transient elevations of [Ca2+]cyt that evoke downstream stimulus-specific responses. Generation of [Ca2+]cyt signals is effected through stimulus-induced opening of Ca2+-permeable ion channels that catalyse a flux of Ca2+ into the cytosol from extracellular or intracellular stores. Many classes of Ca2+ current have been characterized electrophysiologically in plant membranes. However, the identity of the ion channels that underlie these currents has until now remained obscure. Here we show that the TPC1 ('two-pore channel 1') gene of Arabidopsis thaliana encodes a class of Ca2+-dependent Ca2+-release channel that is known from numerous electrophysiological studies as the slow vacuolar channel. Slow vacuolar channels are ubiquitous in plant vacuoles, where they form the dominant conductance at micromolar [Ca2+]cyt. We show that a tpc1 knockout mutant lacks functional slow vacuolar channel activity and is defective in both abscisic acid-induced repression of germination and in the response of stomata to extracellular calcium. These studies unequivocally demonstrate a critical role of intracellular Ca2+-release channels in the physiological processes of plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号