首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
为分析DTⅥ2扣件弹条的力学性能,基于大型计算程序ABAQUS,建立扣件弹条有限元模型,并验证模型可靠性。研究结果表明:弹条应力产生的最大区域为弹条小圆弧内侧及跟端下侧与铁垫板接触部分,此区域易产生较大塑性变形、萌生裂纹并不断发展,在安装和养护维修过程中应加以关注;安装状态、摩擦因数和温度对扣压力影响相对较小,弹程对扣件弹条扣压力和最大等效应力影响较大;弹条特征部位的最大等效应力和垂向加速度在782~934,1 160~1 270和1 620~1 700 Hz频率范围出现3个明显的峰值,表明在这些频率下弹条易突然发生断裂。  相似文献   

2.
剪切型减振器扣件减振性能良好,广泛应用于城市轨道交通线路,但在减振器扣件区段发生较为严重的钢轨异常波磨。在300 Hz频段减振器轨道振动加速度存在较大峰值带,发生轮轨强烈共振;在200~350 Hz频段,减振器扣件轨道系统的阻尼比很小,动刚度在300 Hz存在波谷。同时,振动加速度频域分布、行车速度和波磨特征波长具有高度相关性,所以,在300 Hz频段的轮轨共振是产生异常波磨的主要原因。针对此问题,提出通过安装调频钢轨阻尼器(TRD)的方案改善轨道动力特性,并进行安装前后的实验室动力特性测试。研究结果表明:安装TRD能够改善Ⅲ型减振器轨道的动力特性,调节频率,提高阻尼,降低工作频率,改善轨道的减振性能。本方案可以作为地铁线上整治异常波磨的有效方法。  相似文献   

3.
地铁是城市交通的重要组成部分,而扣件系统是地铁轨道结构的关键部件,起到固定钢轨、减振降噪的作用。为分析地铁e型弹条扣件的疲劳性能,基于车辆轨道动力学理论,通过多体动力学软件UM建立了车轨耦合模型,研究了车辆速度、轨道不平顺类型以及曲线半径与钢轨动力学响应的关系;并通过有限元软件ABAQUS对扣件系统进行了仿真计算,将车轨耦合动力分析得到的钢轨位移作为疲劳荷载,采用应力疲劳计算的方法对弹条的疲劳寿命进行了预测和分析。结果表明:钢轨位移响应受不平顺类型和车辆速度的影响较小,而加速度响应对两者则比较敏感;轨道曲线半径的改变,对内轨位移的影响相对明显,随着半径的减小,内轨的位移时程曲线出现明显的上移,同时对加速度的影响也增大,内轨加速度峰值呈增大趋势;基于此模型计算的弹条疲劳寿命为2.14×107次,寿命最低处位于弹条后拱小圆弧段,与实际断裂位置相吻合;弹条初始安装扣压力对弹条疲劳寿命的影响很大,随着初始安装扣压力的增大,弹条的疲劳寿命不断减小,且减小的速度趋于增大,为确保弹条扣件处于良好的工作状态,初始扣压力应当控制在11~15 kN范围内。  相似文献   

4.
地震作用下,储藏柜的加速度、速度响应及后续的防震研究均与其动力特性相关.为了得到博物馆储藏柜在不同工况下的动力特性,利用振动信号采集系统进行环境振动测试,并通过模态识别理论进行识别,分析层数、荷载参数对储藏柜动力特性的影响.建立不同层数的储藏柜有限元模型,并基于优化理论和实测结果对模型进行修正.结果表明:6层储藏柜初始状态的前两阶自振频率为13.70Hz,17.90Hz;拆解过程使储藏柜的连接变弱,自振频率降低8.8%;随着层数的增加前两阶自振频率基本呈先增加后减小的趋势.随着荷载的增加,自振频率基本呈增加的趋势,基频最大增幅在7%左右;储藏柜动力特性的变化是连接刚度与荷载大小的综合体现;修正后各个模型的动力特性与实测动力特性有较好的一致性.  相似文献   

5.
为研究焊接接头不平顺演变对车辆-轨道动态相互作用的影响,现场跟踪测试得到不同服役时期的焊接接头不平顺数据,并利用车辆-轨道垂向耦合动力学模型,从时域和频域两个角度,分析计算了不同服役时期焊接接头不平顺对车轮、钢轨振动加速度及轮轨垂向力的影响.分析结果表明:焊接接头不平顺演变分为马鞍形凹陷形成阶段及焊缝区域内磨损加速阶段;焊接接头不平顺几何形态的演变对时域内轮轨动态响应结果影响显著,随着焊接接头不平顺几何形态演变,轮轨动态响应结果呈先增大后减小再增大的趋势;焊接接头不平顺几何形态演变对轮轨动态响应的频域分布影响较小,轮轨动态响应功率谱密度图中存在明显两个频段,分别为低频段31~35 Hz及高频段530~610 Hz,高频段具体位置和焊缝区域内不平顺几何形态联系紧密.  相似文献   

6.
为有效评估和预测W300-1型扣件弹条在实际工作状态下的疲劳寿命,综合考虑弹条材料的弹塑性力学特性及复杂接触关系,建立有限元模型;分析弹条在不同安装扭矩下的受力情况,并用数字图像相关(DIC)测试结果予以验证;基于京沪高铁实测轮轨力时程曲线,施加等效循环疲劳载荷谱,结合弹条材料应变-寿命曲线,预测弹条疲劳寿命;分析安装扭矩、疲劳载荷幅值、以及两者匹配关系(应力比)对弹条疲劳寿命的影响。结果表明:无论处于略微欠拧、正常安装或过拧状态,弹条危险点位置均位于跟端圆弧内表面,已发生塑性变形。弹条疲劳寿命随安装扭矩和疲劳载荷幅值的增加而降低,与危险点应力比呈线性关系。因此,为保证弹条的实际使用寿命,特别是在车速较高或波磨较严重的线路,建议弹条安装时安装扭矩不超过300 N·m。  相似文献   

7.
对北京地铁2号线和在建直径线邻近古建筑(明城墙遗址和京奉铁路正阳门老车站旧址)现场测试,评估其在既有地铁交通和路面交通作用下的振动响应,并研究古建筑结构振动响应的传播规律.测试结果表明:1)时域内,古建筑结构在地铁运营下的振动响应是路面交通的10倍左右;交通振动引起古建筑结构的动力响应随水平距离和竖直距离呈规律改变,且古建筑结构以水平方向动力响应为主;2)频域内,地铁交通引起古建筑响应的主要频段是40~90 Hz,路面交通引起古建筑响应的主要频段是10~20 Hz,且路面交通引起的古建筑振动速度在一定范围内出现放大现象.  相似文献   

8.
阐述了压电材料的选择、压电双晶片的特性,讨论了螺旋式压电振动给料器所用的压电振子,并对压电振子的振动模式进行了选择.建立了螺旋式压电振动给料器的振动模型,通过对物料在料盘上的受力情况进行分析,得出给料器的频率表达式.再通过样机测试,得到其共振频率为224.609 Hz,再通过试验得到频率与输送速度的特性曲线.试验结果表明,当电压为200 V,频率为220 Hz左右时,输送物料速度为83个/30 s;频率为160~280 Hz之间时,系统具有输送物料的能力,共振条件下(224.609 Hz)输送速度最快.  相似文献   

9.
通过构建车辆-钢弹簧浮置板轨道垂向耦合模型,计算分析了扣件(隔振器)刚度和阻尼对钢弹簧浮置板轨道频域随机振动的影响规律,为钢弹簧浮置板轨道关键设计参数的合理选择与组合优化提供理论依据.研究结果表明:a.在钢弹簧浮置板轨道垂向位移满足规范要求的前提下,尽可能降低扣件与隔振器刚度;b.扣件阻尼增大能够降低浮置板轨道及其下方基础20~65 Hz的中高频振动,但同时会放大其80 Hz以上的高频振动,建议扣件阻尼系数的取值范围为50~100kN/(m·s~(-1));c.隔振器阻尼增大可略微降低浮置板轨道基础5~16Hz的中低频振动,但同时会显著放大其20Hz以上的中高频振动,建议隔振器阻尼系数应控制在55~75kN/(m·s~(-1))范围内.  相似文献   

10.
阐述了PZT系压电陶瓷材料的特性,讨论了直线式压电振动给料器所用的压电振子,并对压电振子的类型进行了选择.建立了直线式压电振动给料器的振动模型,通过对物料在料盘上的受力情况进行分析,得出给料器的频率表达式.再通过样机测试,得到其共振频率为91 Hz,再通过试验得到频率与给料速度的特性曲线.试验结果表明,当电压为220 V,频率为91 Hz,输送物料速度为35 mm/s;频率为60~140 Hz之间时,系统具有输送物料的能力,共振条件下(91 Hz)输送速度最快.  相似文献   

11.
为研究Vanguard扣件在地铁曲线段的减振效果,以北京地铁5号线某曲线段为例,分别对DTVI_2扣件和Vanguard扣件下列车运行引起的地表振动响应进行现场测试.并通过建立相应的三维动力学数值模型对比分析了两种扣件在直线段和曲线段的地表动力响应特性和衰减规律.通过分析振动响应峰值、最大垂向计权Z振级及插入损失,研究了Vanguard扣件的减振效果.根据现场实测以及数值分析结果可知:列车运行引起的地铁曲线段地表动力响应高于直线段,圆曲线和缓和曲线的动力响应特性类似且量值接近;列车运行引起的地表横向及垂向动力响应随距线路中心线横向距离的增加而呈起伏式衰减;列车运行于DTVI_2扣件和Vanguard扣件的轨道上时引起的地表垂向振动响应显著的频段分别位于60Hz和30Hz附近;Vanguard扣件减振效果显著,对曲线段水平向振动响应的减振性能良好.  相似文献   

12.
地铁普通扣件钢轨波磨特性   总被引:6,自引:0,他引:6  
通过分析上海某地铁线路上普通扣件轨道区段钢轨波磨实测数据,得到该区段波磨的典型通过频率.然后建立三维实体有限元模型并进行模态分析,发现实测波磨的典型通过频率均与轨道结构某几阶弯曲振型的频率相接近.最后基于摩擦功理论,建立磨耗计算模型并进行仿真计算,对波磨频率特征及发展特性进行分析研究.结果表明普通扣件轨道低频处峰值较大,而且不同车速下峰值频率基本吻合.结合磨耗叠加图及1/3倍频程等级图,可得相同速度下,随着叠加次数的增加,波磨波峰、波谷叠加位置相同,特征频率相同;不同速度下,波磨的特征频率并未随速度的改变而发生改变,体现了波磨固定位置和固定频率的特性.在车速80km·h~(-1)和60 km·h~(-1)下,波磨在40 Hz、80 Hz频带内发生的可能性较大;而在车速40 km·h~(-1)下,轨道上主要表现为均匀磨耗.同时车速对波磨的增长有一定影响,速度越大,总体磨耗量越大;但磨耗的发展速度并不完全随车速的增大而增大.  相似文献   

13.
木结构剪力墙中钉连接的实验研究   总被引:4,自引:1,他引:3  
 选用国产普通圆钉、进口规格木材和定向木片板,制作了268个木结构剪力墙中钉连接的试件,采用单调加载方式进行实验研究,得到了如下主要结论:普通圆钉连接强度主要取决于破坏模式;边距不足明显影响钉连接的强度;钉连接刚度离散性较大,墙骨木材木纹方向对刚度的影响十分明显;通过进一步的试验研究,得出各种规格国产钉连接强度和刚度计算公式,将是十分必要的。  相似文献   

14.
介绍了紧固件用钛合金材料的应用现状、牌号、特点及性能,并指出其未来的发展趋势。对发展钛合金紧固件以及相应的新型钛合金材料研制具有重要的借鉴意义。  相似文献   

15.
扣件的健康状态是保障轨道车辆正常运行的关键.当前人工检测轨道扣件效率较低,具有缺陷性.针对这一问题,提出了基于改进YOLOv4算法的轨道扣件与检测.在YOLOv4网络中,利用CSPDarknet53第二个残差块嵌入conv卷积结构与YOLO头部结构,增加输出端,并进行网络中的上采样与下采样.与YOLOv4原算法模型相比...  相似文献   

16.
针对高速铁路动态巡检系统中扣件缺失的快速识别问题,提出一种新型的探测方法:利用红外光源垂直照射钢轨扣件形成三束红外结构光,通过硬件系统实现高速相机对实时图像的采集.利用图像形态学处理等图像处理方法,对所采集图像进行预处理、实现扣件定位、扣件特征提取、识别判断并将结果存储至后台数据库,实现检测数据的实时管理。研发了一套基于轨检小车平台的动态巡检实验系统,经实验室模拟实验以及上线测验证明了该方法实际可行,具有很高的准确性和可靠性。  相似文献   

17.
引入扩展有限元方法,结合现场调研与实测数据,建立均匀受力理想状态和偏载受力不利工况下螺旋道钉扩展有限元模型,通过预设横向、竖向微裂纹以及单条和多条微裂纹工况,分析研究了扣件螺旋道钉的裂纹发展过程.结果表明,由于螺旋道钉的道钉头部和螺杆结合部位存在较大的结构尺寸变化,导致了该处存在较大的应力集中,易萌生微裂纹,并在列车荷载长期作用下裂纹沿着横向扩展、贯通.对比看出,研究结果与实际扣件螺旋道钉的断裂形式相符,表明采用扩展有限元方法能很好地进行扣件螺旋道钉的断裂过程分析.此外,为避免和减少螺旋道钉的断裂发生,分13种工况研究了螺旋道钉肩胛过渡圆弧的设置.研究结果建议,对于T30×155型扣件螺旋道钉应设置1.6 mm半径的过渡圆弧,相对于不设置过渡圆弧,最大应力可减小40%.  相似文献   

18.
介绍了一个基于MAX038的宽频程控正弦波发生器的设计.单片机通过D/A转换器对MAX038的控制实现频率和占空比的调控,并能自动地反馈控制输出频率,信号输出频率范围在0.1 Hz~20 MHz.该系统具有程控调节输出频率等突出优点.  相似文献   

19.
在获得3.5%Nacl溶液-海砂-甲烷水合物体系阻抗谱参数的基础下,通过计算得到了该体系的复电阻率数据,分析了复电阻率参数的频散特性以及水合物饱和度对其频散特性的影响,进而建立了复电阻率模型。结果表明:在0.1 Hz~1 MHz测试频率范围内,含甲烷水合物多孔介质的复电阻率存在明显频散现象;甲烷水合物饱和度与复电阻率频散特征参数密切相关,饱和度越小复电阻率频散特性越显著,当测试频率范围为0.1 Hz~10 Hz时,复电阻率幅值、实部和虚部与测试频率在双对数坐标系下成线性关系,其斜率的绝对值与水合物饱和度之间成递减的近似线性关系,而当测试频率范围为10 Hz~1 MHz时,复电阻率幅值和实部的频散度与水合物饱和度符合递减的近似线性关系;在本研究的测试条件下,含水合物多孔介质体系的阻抗谱可以用电阻和电容的串联等效电路模型来拟合,基于此建立的复电阻率模型可用来计算水合物饱和度。  相似文献   

20.
复合材料结构修理是飞机复合材料结构全寿命周期中不可或缺的重要环节。螺接修理传递载荷大,操作简单,易于外场实施。快速估算螺接修理结构的剩余强度,有助于修理参数优化及修理方案的设计。采用基于子模型法的有限元数值分析方法,快速预估螺接修理层压板结构的承载能力。模型中复合材料层压板和金属补片用壳元模拟,螺栓用梁元模拟,采用多点约束技术模拟螺栓与螺栓孔的接触。在整体模型应力分析的基础上,选择高应力区建立子模型,提出0°层点应力准则判断层压板是否破坏,根据粱元剪力的大小用工程方法评估螺栓的强度。分析表明,分析方法建模简单、计算周期短、分析结果与试验结果误差在5%以内,可以满足工程设计和分析要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号