首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
连通容器甲烷-空气混合物抑爆影响因素   总被引:1,自引:0,他引:1       下载免费PDF全文
为了研究连通器甲烷-空气混合物抑爆的影响因素,利用小球容器、管道、大球容器建立了5种结构的连通容器气体爆炸测试系统,在40目丝网结构条件下,研究了管道长度、丝网层数、传爆容器、抑爆位置等对连通容器甲烷-空气混合物爆炸强度的影响。结果表明:小球容器与管道连通时,随着丝网层数和接管长度的增加,管道末端的压力逐渐降低;当增加传爆容器时,球形容器与管道内气体爆炸强度增加;小球容器与1段管道以及大球容器连通时,丝网层数越多,抑爆效果越明显;小球容器与2段管道以及大球容器连通时,丝网结构能够产生一定的抑爆效果,但抑爆效果不明显;小球容器与3段管道连通时,抑爆位置对连通容器抑爆效果产生较大影响。抑爆位置对连通容器抑爆效果与丝网结构的层数有关。因此,在实际生产应用中,应综合考虑多种因素的影响,以达到最佳的抑爆效果。  相似文献   

2.
内置障碍物连通容器内气体爆炸的火焰传播   总被引:1,自引:1,他引:0  
利用数值模拟方法,建立连通容器气体爆炸模型,模拟内置障碍物条件下的火焰传播过程。分析障碍物不同阻塞率、位置对连通容器气体爆炸的火焰传播、爆炸压力和强度的影响情况。结果表明:当火焰经过障碍物时,障碍物加速了火焰传播,但不同障碍物条件对整个火焰传播过程的影响有差异。  相似文献   

3.
利用Fluent软件对连通容器泄爆过程中的气体爆炸流场进行数值模拟,获得气体爆炸过程的温度场和压力场,模拟结果能较清晰地反映泄爆过程。研究表明:连通容器泄爆时起爆容器的火焰高度均高于传爆容器,容器内温度随着泄爆时间的延长逐渐上升,泄爆口开启后又迅速下降;在泄爆初期,起爆容器的压力均低于传爆容器的压力,小球内压力衰减速度大于大球内压力衰减速度。  相似文献   

4.
利用1个球形容器和3节相同尺寸的圆形管道建立了实验系统,并开展相关实验,研究容器内气体爆炸带导管泄爆过程的机制。结果表明:安装泄爆导管增加了容器爆炸强度;破膜激波使导管入口处压力上升,射流火焰点燃导管入口处未燃气体产生二次爆炸,导致容器内及导管入口处压力突变;一定范围内,导管长度越长,容器及管道内的压力峰值越大;有导管存在时,尾部点火容器内的压力峰值及导管入口处的压力峰值都高于中心点火的情况,且尾部点火导管前部分的火焰传播速率高于中心点火的情况;无论尾部点火还是中心点火导管入口处的压力峰值都高于导管出口处的压力峰值。  相似文献   

5.
以甲烷-空气混合物作为研究气体,用两个不同尺寸的球形容器和三段管道组合成不同结构的连通容器,进行多次爆炸实验,对比分析不同抑爆位置条件下球形容器与管道末端的最大爆炸压力与最大爆炸压力上升速率。结果表明:抑爆位置对连通容器混合气体爆炸产生一定影响;连通容器的最佳抑爆位置与管道长度有一定的关系;对于球形容器与一段管或两段管构成的连通容器中,抑爆位置对气体爆炸影响不大;对于两个球形容器与三段管构成的连通容器中,抑爆位置对连通容器混合气体爆炸影响较大,在管道中后段加入丝网结构抑爆效果最佳。在实际生产设计中,应根据具体应用条件和要求,全面考虑选用最佳的抑爆位置。  相似文献   

6.
建立小球形容器与两段管道连接、2个球形容器与3段管道连接的2种形式的爆炸实验装置,通过实验分析和理论分析研究初始压力对连通容器甲烷-空气混合物爆炸压力的影响。研究发现:相同条件下,球形容器接管后甲烷最大爆炸压力与初始压力呈近似的线性关系。连通容器甲烷爆炸时起爆容器压力始终低于传爆容器压力,起爆容器不同,两个容器内最大爆炸压力差均随着初始压力的增加逐渐增大。初始压力对不同结构和尺寸的球形容器、容器接管和连通容器甲烷最大爆炸压力的影响程度不同,可以用最大爆炸压力随初始压力的变化速率表示,最大爆炸压力变化速率越高,初始压力影响越大。  相似文献   

7.
为研究气体爆炸泄爆收容过程中爆炸容器和收容容器内的压力变化规律及其影响因素,对球形容器在不同收容容器和爆炸容器体积比以及不同导管长度条件下的泄爆收容过程经行了实验研究。结果表明:收容容器体积越大,爆炸容器的压力峰值越小,爆炸压力下降的速度越快;收容容器的体积达到或超过爆炸容器体积的5倍时,接近敞开泄爆的压力峰值;泄爆导管的长度越长,爆炸容器的压力峰值越小;收容泄爆时,火焰的传播速率随着导管传播距离增加而降低,泄爆口处火焰传播速率最高。  相似文献   

8.
为了考察弯管对泄爆收容过程的影响,采用实验和数值模拟相结合的方法,对球形容器内可燃气体爆炸通过不同角度弯管泄放到另一球形容器的泄爆收容过程进行了研究。结果表明:泄爆收容时,由于高速气流和喷射火焰的作用,大部分进入导管内的未燃气体发生湍流燃烧,部分未燃气体随压力波到达收容容器内;泄爆收容过程中,起爆容器内压力受弯管角度的影响不大,而收容容器内压力随着弯管角度的增加不断下降。当采用90°弯管时,收容容器内的压力峰值最小为0.432 MPa。  相似文献   

9.
为研究丝网结构对容器管道开口系统气体爆炸的影响,通过改变丝网结构的层数和目数,对连接有一段管道的球形容器进行实验。研究发现,当系统处于开口状态时,在管道处加入具有抑爆效果的丝网后,容器内最大泄爆压力增大,且最大泄爆压力随着丝网层数以及丝网目数的增加而增大。建立数学模型对容器内部最大泄爆压力进行拟合,通过拟合公式发现,丝网层数对容器管道开口系统气体爆炸时的最大泄爆压力有一定的影响,并且开始时最大泄爆压力随着丝网层数的增加而增加,随后丝网结构对最大泄爆压力的影响逐渐减小,最大泄爆压力趋于稳定。  相似文献   

10.
泄爆外部压力变化特性的影响因素   总被引:2,自引:1,他引:1       下载免费PDF全文
为了研究可燃性气体爆炸泄爆过程中,不同因素对容器外部压力变化特性的影响,利用0.022和0.113 m3 2个球形容器进行了一系列实验。实验结果给出了不同容器容积、泄爆面积、容器结构和形式条件下容器外部压力发展历史:容器容积减小,会导致泄爆容器外部的峰值压力增大,压力变化更为迅速,持续冲击时间减小;泄爆口直径在0~0.04 m范围内增加,容器外部最大压力上升速率及峰值压力均相应增大,呈现上升的趋势但非线性,存在一个增加程度先减小后增大的驻点;容器结构和形式对泄爆过程产生显著的影响,相对于单个容器,连通容器外部峰值压力、最大压力上升速率均有较大提高;连通容器泄爆时,跟大容器泄爆相比,小容积泄爆外部最大峰值压力较大,最大压力上升速率较小。  相似文献   

11.
丝网结构对连通容器抑爆效果的影响   总被引:3,自引:2,他引:1       下载免费PDF全文
为了考查多层丝网结构对连通容器内气体爆炸的抑制作用,以甲烷-空气混合物为研究对象,利用0.022m3和0.113m3 2个球形容器与一段2m长的管道构成的连通容器进行了一系列丝网结构的抑爆实验,对比分析了20,40,60目和1,3,5,7,9层等不同丝网结构对连通容器的抑爆效果,并通过理论分析和数据处理得到最佳的抑爆结构。结果表明,丝网结构对传爆容器中的爆炸强度的影响要大于起爆容器;当丝网层数较少时,目数对大、小球的爆炸压力影响较小,丝网结构对连通容器不但没有抑爆作用,反而有增加爆炸强度的作用;当丝网层数较多时,目数对大、小球的爆炸压力影响较大;当丝网目数相同时,层数越多,爆炸抑制效果越好。实验条件下,5层和7层分别是40目和60目丝网结构抑爆的临界层数;与5层40目丝网结构相比,7层60目的丝网抑爆效果更好。因此,在实际设计中,应根据其综合作用选择最佳的抑爆结构。  相似文献   

12.
在现有的气体爆炸泄爆实验及理论研究的基础上,归纳总结泄爆过程中影响容器内压力峰值的主要因素,将这些因素作为输入,对压力峰值与各因素之间的内在非线性关系进行模拟,提出一种基于支持向量机的容器内气体爆炸泄爆压力峰值预测方法。对模型的有效性及预测性能进行验证,表明模型预测的结果与实验值基本一致;将模型的预测性能与现有的经验、半经验公式以及泄爆设计准则进行对比,表明建立的模型具有较高的准确性,为容器泄爆设计提供了一种新的途径。  相似文献   

13.
水平管道内甲烷爆炸压力传播实验   总被引:1,自引:0,他引:1  
借助自行研制的瓦斯爆炸水平管道模拟巷道,通过实验研究低浓度瓦斯爆炸特征参数及爆炸压力在水平管道内的传播规律。结果表明:爆炸极限范围内的甲烷气体,在燃爆腔体内(点火段附近)爆炸超压随甲烷浓度的增大呈先增大后减小的趋势;甲烷体积分数为9.4%时,爆炸压力最大,为0.165670MPa,对应时间为76.8ms。在燃爆腔体一扩散管路内,气体爆炸压力峰值呈波动性变化;距点火段3600mm处、体积分数为9.4%的甲烷气体爆炸压力最大,爆炸超压为0.181228MPa。实验中甲烷爆炸超压的体积分数为9.4%。该研究为管道及煤矿巷道瓦斯爆炸事故分析提供了参考。  相似文献   

14.
建立了一套野外试验系统,设计了19组试验工况,分别研究了室内燃气浓度、泄爆窗玻璃破坏强度及面积对室内燃气爆炸荷载的影响,得到了玻璃窗泄爆条件下室内燃气爆炸的荷载特性和变化规律。试验研究结果表明:甲烷浓度在7.5%~10.5%时,室内燃气爆炸产生两个压力峰值,并引起声振不稳定燃烧,形成远大于第一个压力峰值的第二压力峰值;甲烷浓度较高时,声振现象不容易出现,只产生一个压力峰值,其大小仅与泄爆口封闭物有关;当甲烷气体浓度为9.5%时,燃气爆炸反应最剧烈,第一个压力峰值和声振压力峰值均为最大;提高泄爆窗玻璃破坏强度,会导致爆炸荷载的第一个压力峰值增大;增加泄爆窗面积,会使第一个压力峰值略微降低,但第二个的声振压力峰值则会大幅降低。研究结果有利于了解玻璃窗泄爆条件下室内燃气爆炸荷载规律和作用机理,并对进一步研究燃气爆炸荷载下结构的动力响应和破坏形态具有实际意义。  相似文献   

15.
ZrO2泡沫陶瓷对瓦斯爆炸的影响   总被引:1,自引:0,他引:1  
为有效阻隔煤矿井下一次瓦斯爆炸后伴随的连续爆炸或多次爆炸,在爆炸实验管道内设置ZrO2泡沫陶瓷阻隔爆装置,进行瓦斯爆炸实验,分析ZrO2泡沫陶瓷的厚度和孔隙度对瓦斯爆炸压力波波速及超压的影响。结果表明:设置陶瓷阻隔爆装置后的爆炸压力波上升速率和超压较空管时均有所下降;30 mm厚的陶瓷对前驱压力波上升速率的衰减作用明显;泡沫陶瓷能够抑制爆炸波能量的传播,降低爆炸强度。该结果为煤矿阻隔爆技术的研究提供了新思路。  相似文献   

16.
管道内障碍物扰动对煤气爆炸特性影响的数值模拟   总被引:1,自引:0,他引:1  
王成  马天宝  卢捷 《中国科学(G辑)》2009,39(9):1248-1257
结合实验研究,采用迎风型WENO格式和两阶段化学反应模型就管道内障碍物对煤气/空气预混气体爆炸火焰的影响规律进行了数值研究,探讨了自管道右端面反射产生的压缩波与火焰传播的相互作用规律,得出了该反射波是造成火焰速度下降的原因.在此基础上,分析了障碍物对火焰的作用机理以及由此诱发的流场变化规律.结果表明,由于障碍物的加入,爆燃波发生多次反射,使得可燃混合气体得到充分压缩,温度和压力增加,化学反应速率提高,火焰强度得到加强.同时,从障碍物中传播出去的爆燃波经壁面反射后形成三波点,使得该处火焰速度升高,随着三波点的向前传播,由于能量的耗散,火焰速度逐渐下降.这些结论为爆炸场预估、防火防爆和爆轰推进中有效控制可燃气体的燃烧速率和火焰传播速度提供了重要的理论依据.  相似文献   

17.
容器内可燃气体燃爆温度与压力的计算方法   总被引:1,自引:0,他引:1  
对容器内可燃气体爆炸过程进行了热力学分析,得出可燃气体在容器内爆炸前后物质热力学能保持不变的结论。根据化工热力学能量守恒方程,推导出了两种容器内可燃气体爆炸温度和压力的计算方法。对几种可燃烃类气体进行了计算,其计算结果与文献值和实验值进行了比较分析,结果表明:燃爆温度的计算偏差为9.14%~11.15%,爆炸压力的计算偏差为5.84%~12.21%,说明了计算方法的有效性和实用性。结合计算实例对两种计算方法进行了阐述,计算结果基本一致。  相似文献   

18.
将吸附剂和隔爆材料分别填充于爆炸容器中进行瓦斯防爆实验研究.结果表明:常压条件下,CH4在O2中的爆炸极限为8.5% ~62.5%,爆炸压力最大时的CH4体积分数为36%,略高于理论值(33.3%).单球容器中填充吸附剂具有很好的抑爆性能,即使遇到点火源也能抑制爆炸的发生 ;连通容器中,吸附剂能很好地阻止爆炸的传播 ;随着压力的增大,吸附剂抑爆效果变差,但当压力超过一定值时,随着压力的增大,其抑爆效果变好.隔爆材料由于其具有良好的导热性,无论是在空气、O2环境中,还是在加压条件下都能很好地阻止爆炸的传播 ;压力上升速率越高,其隔爆效果越好.  相似文献   

19.
为揭示煤矿巷道爆炸冲击压力传播规律降低经济损失和人员伤亡,本文对典型巷道爆炸过程中障碍物对压力冲击波传播影响规律进行了三维有限元分析。结果表明:距离爆炸中心较近的点,压力在短时间内迅速升高,然后由于冲击波吸收和向开口端的传播,压力迅速下降,下降速率小于升高速率;障碍物的存在,提高了冲击压力峰值,距离爆炸中心越近,影响越显著,距离爆炸中心为10m时,障碍物存在使压力峰值升高为1.4MPa,约为没有障碍物时3倍;距离爆炸中心较近时,由于反射作用,存在二次冲击压力峰值,二次冲击压力具有较大的破坏作用。本研究对安全系统设计和冲击压力预测具有重要理论和实际意义。  相似文献   

20.
为了研究球形容器泄爆及其外部伤害效应,利用小球容器和大球容器建立了2种尺寸的球形容器泄爆测试系统。在研究球形容器泄爆内部压力变化特性时,利用大、小球容器分别开展了无膜泄爆和泄爆片泄爆2种实验,得到了如下结论:当大、小球容器泄爆时,随着泄爆口直径的增加,最大泄爆压力减小,压力上升速率减小,正压持续时间减小;当无量纲化泄压比较小时,无膜泄爆峰值压力随泄压比的增大而减小,且呈线性变化。在研究球形容器泄爆外部伤害效应时,分别进行了大、小球容器压力伤害范围实验,获取了大、小球容器泄爆口周围空间不同位置处的压力峰值,并结合超压伤害阈值标准,判断其对人员的伤害作用,从而划定了压力伤害的范围。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号