首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quadruplex structure of Oxytricha telomeric DNA oligonucleotides.   总被引:39,自引:0,他引:39  
F W Smith  J Feigon 《Nature》1992,356(6365):164-168
The telomeres of most eukaryotes contain a repeating G-rich sequence with the consensus d(T/A)1-4G1-8, of which 12-16 bases form a 3' single-strand overhang beyond the telomeric duplex. It has been proposed that these G-rich oligonucleotides associate to form four-stranded structures from one, two or four individual strands and that these structures may be relevant in vivo. The proposed structures contain Hoogsteen base-paired G-quartets, precedent for which has been in the literature for many years. Here we use 1H NMR spectroscopy to study the conformations of the DNA oligonucleotides d(G4T4G4) (Oxy-1.5) and d(G4T4G4T4G4T4G4) (Oxy-3.5) which contain the Oxytricha telomere repeat (T4G4). We find that these molecules fold to form a symmetrical bimolecular and an intramolecular quadruplex, respectively. Both structures have four G-quartets formed from nucleotides that are alternately syn and anti along each strand. This arrangement differs from earlier models in which the strands are alternately all syn or all anti. The T4 loops in Oxy-1.5 are on opposite ends of the quadruplex and loop diagonally across the G-quartet, resulting in adjacent strands being alternately parallel and antiparallel.  相似文献   

2.
Inhibition of telomerase by G-quartet DNA structures   总被引:52,自引:0,他引:52  
The ends or telomeres of the linear chromosomes of eukaryotes are composed of tandem repeats of short DNA sequences, one strand being rich in guanine (G strand) and the complementary strand in cytosine. Telomere synthesis involves the addition of telomeric repeats to the G strand by telomere terminal transferase (telomerase). Telomeric G-strand DNAs from a variety of organisms adopt compact structures, the most stable of which is explained by the formation of G-quartets. Here we investigate the capacity of the different folded forms of telomeric DNA to serve as primers for the Oxytricha nova telomerase in vitro. Formation of the K(+)-stabilized G-quartet structure in a primer inhibits its use by telomerase. Furthermore, the octanucleotide T4G4, which does not fold, is a better primer than (T4G4)2, which can form a foldback structure. We conclude that telomerase does not require any folding of its DNA primer. Folding of telomeric DNA into G-quartet structures seems to influence the extent of telomere elongation in vitro and might therefore act as a negative regulator of elongation in vivo.  相似文献   

3.
We have recently shown that under superhelical stress and/or acid pH the homopurine-homopyrimidine tracts conforming to the mirror symmetry (H palindromes) form a novel DNA structure, the H form. According to our model, the H form includes (1) a triplex formed by half of the purine strand and by the homopyrimidine hairpin and (2) the unstructured other half of the purine strand. We used four specially designed sequences to demonstrate that, in accordance with our model, the mirror symmetry is essential for facile formation of the H form detected by two-dimensional gel electrophoresis. Here we report that, under conditions favouring the H-form extrusion, guanines of the 3' half of the purine strand are protected against alkylation by dimethylsulphate, whereas adenines of the 5' half of the purine strand react with diethyl pyrocarbonate. These data indicate that the 3' half of the homopurine strand is within the triplex whereas the 5' half is unstructured, in full agreement with our model.  相似文献   

4.
Molecular cloning of human telomeres in yeast   总被引:34,自引:0,他引:34  
W R Brown 《Nature》1989,338(6218):774-776
Telomeres are the DNA sequences found at the ends of linear chromosomes. They define the boundaries of the genetical and physical maps of such chromosomes and so are particularly important for the complete mapping of large genomes that is now being attempted. Telomeres have been intensively studied in the yeast Saccharomyces cerevisiae and in ciliated protozoa: in these organisms the telomeric DNA consists of arrays of tandemly repeated short sequences in which one strand is guanosine-rich and oriented 5' to 3' towards the chromosome end. The conservation of these structural features is reflected in the observation that telomeric DNA from a variety of protozoa will function as telomeres on artificial linear mini-chromosomes in yeast. Tandem arrays of the sequence TTAGGG have been identified at the telomeres of humans and other mammals and also of trypanosomes. This indicates that the structural features of telomeres are conserved between higher and lower eukaryotes and implies that human telomeric DNA could function in yeast. I have used this idea to develop a strategy to isolate a specific human telomere as a molecular clone in yeast and have devised a simple and effective way of cloning other human telomeres and their associated sequences.  相似文献   

5.
Telomeric sequences of DNA, which are found at the ends of linear chromosomes, have been attracting attention as potential sites for the formation of unusual DNA structures. They consist of (GnTm) or (GnATm) motifs (n greater than or equal to m) and, in the single-stranded state, form hairpins stabilized by non-canonical G.G pairs. In the duplex state and under superhelical stress they exhibit hypersensitivity to SI nuclease which by analogy with homopurine-homopyrimidine sequences may reflect the formation of an unusual structure. To determine whether this is the case we have inserted into a plasmid the Tetrahymena telomeric motif (G4T2).(A2C4) and probed it by two-dimensional gel electrophoresis, chemical modification and oligonucleotide binding. Our data demonstrate that, under superhelical stress and at low pH, the insert does indeed adopt a novel DNA conformation. We have concluded that in this structure the C-rich strand forms a hairpin stabilized by non-Watson-Crick base pairs C.C+ and A.A+, whereas the G-rich strand remains unstructured. We term this new DNA structure the (C,A)-hairpin.  相似文献   

6.
Ma JB  Ye K  Patel DJ 《Nature》2004,429(6989):318-322
Short RNAs mediate gene silencing, a process associated with virus resistance, developmental control and heterochromatin formation in eukaryotes. RNA silencing is initiated through Dicer-mediated processing of double-stranded RNA into small interfering RNA (siRNA). The siRNA guide strand associates with the Argonaute protein in silencing effector complexes, recognizes complementary sequences and targets them for silencing. The PAZ domain is an RNA-binding module found in Argonaute and some Dicer proteins and its structure has been determined in the free state. Here, we report the 2.6 A crystal structure of the PAZ domain from human Argonaute eIF2c1 bound to both ends of a 9-mer siRNA-like duplex. In a sequence-independent manner, PAZ anchors the 2-nucleotide 3' overhang of the siRNA-like duplex within a highly conserved binding pocket, and secures the duplex by binding the 7-nucleotide phosphodiester backbone of the overhang-containing strand and capping the 5'-terminal residue of the complementary strand. On the basis of the structure and on binding assays, we propose that PAZ might serve as an siRNA-end-binding module for siRNA transfer in the RNA silencing pathway, and as an anchoring site for the 3' end of guide RNA within silencing effector complexes.  相似文献   

7.
Tetramerization of an RNA oligonucleotide containing a GGGG sequence.   总被引:7,自引:0,他引:7  
J Kim  C Cheong  P B Moore 《Nature》1991,351(6324):331-332
Poly rG can form four-stranded helices. The Hoogsteen-paired quartets of G residues on which such structures depend are so stable that they will form in 5'-GMP solutions, provided that Na+ or K+ are present (see for example, refs 2-4). Telomeric DNA sequences, which are G-rich, adopt four-stranded antiparallel G-quartet conformations in vitro, and parallel tetramerization of G-rich sequences may be involved in meiosis. Here we show that RNAs containing short runs of Gs can also tetramerize. A 19-base oligonucleotide derived from the 5S RNA of Escherichia coli (strand III), 5'GCCGAUGGUAGUGUGGGGU3', forms a K(+)-stabilized tetrameric aggregate that depends on the G residues at its 3' end. This complex is so stable that it would be surprising if similar structures do not occur in nature.  相似文献   

8.
POT1 as a terminal transducer of TRF1 telomere length control   总被引:1,自引:0,他引:1  
Loayza D  De Lange T 《Nature》2003,423(6943):1013-1018
Human telomere maintenance is essential for the protection of chromosome ends, and changes in telomere length have been implicated in ageing and cancer. Human telomere length is regulated by the TTAGGG-repeat-binding protein TRF1 and its interacting partners tankyrase 1, TIN2 and PINX1 (refs 5-9). As the TRF1 complex binds to the duplex DNA of the telomere, it is unclear how it can affect telomerase, which acts on the single-stranded 3' telomeric overhang. Here we show that the TRF1 complex interacts with a single-stranded telomeric DNA-binding protein--protection of telomeres 1 (POT1)--and that human POT1 controls telomerase-mediated telomere elongation. The presence of POT1 on telomeres was diminished when the amount of single-stranded DNA was reduced. Furthermore, POT1 binding was regulated by the TRF1 complex in response to telomere length. A mutant form of POT1 lacking the DNA-binding domain abrogated TRF1-mediated control of telomere length, and induced rapid and extensive telomere elongation. We propose that the interaction between the TRF1 complex and POT1 affects the loading of POT1 on the single-stranded telomeric DNA, thus transmitting information about telomere length to the telomere terminus, where telomerase is regulated.  相似文献   

9.
A pseudoknotted RNA oligonucleotide   总被引:18,自引:0,他引:18  
J D Puglisi  J R Wyatt  I Tinoco 《Nature》1988,331(6153):283-286
  相似文献   

10.
G B Morin 《Nature》1991,353(6343):454-456
Telomeres define the ends of chromosomes; they consist of short tandemly repeated DNA sequences loosely conserved in eukaryotes (G1-8(T/A)1-4). Telomerase is a ribonucleoprotein which, in vitro, recognizes a single-stranded G-rich telomere primer and adds multiple telomeric repeats to its 3' end by using a template in the RNA moiety. In conjunction with other components, telomerase may balance the loss of telomeric repeats due to DNA replication. Another role of telomerase may be the de novo formation of telomeres. In eukaryotes like Tetrahymena, this process is an integral part of the formation of macronuclear chromosomes. In other eukaryotes this process stabilizes broken chromosomes. A case of human alpha-thalassaemia is caused by a truncation of chromosome 16 that has been healed by the addition of telomeric repeats (TTAGGG)n. Using an in vitro assay, I show here that human telomerase correctly recognizes the chromosome 16 breakpoint sequence and adds (TTAGGG)n repeats. The DNA sequence requirements are minimal and seem to define two modes of DNA recognition by telomerase.  相似文献   

11.
Telomeres are protein-DNA complexes at the terminals of linear chromosomes, which protect chromosomal integrity and maintain cellular replicative capacity. From single-cell organisms to advanced animals and plants, structures and functions of telomeres are both very conservative. In cells of human and vertebral animals, telomeric DNA base sequences all are (TTAGGG)n. In the present work, we have obtained absorption and fluorescence spectra measured from seven synthesized oligonucleotides to simulate the telomeric DNA system and calculated their relative fluorescence quantum yields on which not only telomeric DNA characteristics are predicted but also possibly the shortened telomeric sequences during cell division are implied. Oligonucleotide 5′-TTAGGGTTAGGG holds a low relative fluorescence quantum yield and remarkable excitation energy innerconversion, which tallies with the telomeric sequence of (TTAGGG)n. This result shows that telomeric DNA has a strong non-radiative or innerconvertible capability.  相似文献   

12.
T Q Trinh  R R Sinden 《Nature》1991,352(6335):544-547
When present in single-stranded DNA, palindromic or quasi-palindromic sequences have the potential to form complex secondary structures, including hairpins, which may facilitate interstrand misalignment of direct repeats and be responsible for diverse types of replication-based mutations, including deletions, additions, frameshifts and duplications. In regions of palindromic symmetry, specific deletion events may involve the formation of a hairpin or other DNA secondary structures which can stabilize the misalignment of direct repeats. One model suggests that these deletions occur during DNA replication by slippage of the template strand and misalignment with the progeny strand. The concurrent DNA replication model, involving an asymmetric dimeric DNA polymerase III complex which replicates the leading and lagging strands, has significant implications for mutagenesis. The intermittent looping of the lagging strand template, and the fact that the lagging strand template may contain a region of single-stranded DNA the length of an Okazaki fragment, provides an opportunity for DNA secondary-structure formation and misalignment. Here we report our design of a palindromic fragment to create an 'asymmetric palindromic insert' in the chloramphenicol acetyltransferase gene of plasmid pBR325. The frequency with which the insert was deleted in Escherichia coli depends on the orientation of the gene in the plasmid. Our results suggest that replication-dependent deletion between direct repeats may occur preferentially in the lagging strand.  相似文献   

13.
为了对酵母分子生物学理论研究及实际应用的探讨,进行了酵母DNA分子克隆。采用重组DNA技术及放射性分子探针杂交法从克隆库中检测出两大类含有ZDNA重复顺序的重组子。第一类是含有端粒区ZDNA重复顺序及自主复制顺序的重组子。这些重组子对端粒区灼整合转化研究对开拓基因工程的应用具有重要意义。第二类是含有染色体内部分散的ZDNA重复顺序的重组子。这些重组子对研究内在ZDNA的结构和功能有重要的理论价值。按实验结果计算,在酵母基因组中大约存在有100个ZDNA重复顺序片段。  相似文献   

14.
真核生物染色体末端复制,DNA聚合酶并不能完成,需要端粒酶来进行,在缺少端粒酶活性的情况下,细胞将发生衰老并直至死亡。在肿瘤细胞中,通过抑制端粒酶活性可达到治疗癌症的目的。构建具有端粒酶活性的反转录酶区表达载体,转化体细胞可获得永生细胞系,可以用于基因治疗和遗传学应用。  相似文献   

15.
Parker JS  Roe SM  Barford D 《Nature》2005,434(7033):663-666
RNA interference and related RNA silencing phenomena use short antisense guide RNA molecules to repress the expression of target genes. Argonaute proteins, containing amino-terminal PAZ (for PIWI/Argonaute/Zwille) domains and carboxy-terminal PIWI domains, are core components of these mechanisms. Here we show the crystal structure of a Piwi protein from Archaeoglobus fulgidus (AfPiwi) in complex with a small interfering RNA (siRNA)-like duplex, which mimics the 5' end of a guide RNA strand bound to an overhanging target messenger RNA. The structure contains a highly conserved metal-binding site that anchors the 5' nucleotide of the guide RNA. The first base pair of the duplex is unwound, separating the 5' nucleotide of the guide from the complementary nucleotide on the target strand, which exits with the 3' overhang through a short channel. The remaining base-paired nucleotides assume an A-form helix, accommodated within a channel in the PIWI domain, which can be extended to place the scissile phosphate of the target strand adjacent to the putative slicer catalytic site. This study provides insights into mechanisms of target mRNA recognition and cleavage by an Argonaute-siRNA guide complex.  相似文献   

16.
Telomerase primer specificity and chromosome healing   总被引:37,自引:0,他引:37  
L A Harrington  C W Greider 《Nature》1991,353(6343):451-454
Chromosome healing by de novo telomere addition at nontelomeric sites has been well characterized in several organisms. The Tetrahymena telomerase ribonucleoprotein uses an internal RNA template to catalyse d(TTGGGG)n telomere addition to the 3' end of telomeric sequence in vitro and in vivo. Studies of telomerase RNA indicated that hybridization of the RNA template region, 5'-CAACCCCAA-3', to the 3' end of single-stranded telomeric oligonucleotides might be important for primer recognition and utilization. The apparent requirement of telomerase for pre-existing telomeric sequence has raised questions regarding its role in chromosome healing. We report here that Tetrahymena telomerase can specifically elongate single-stranded DNA oligonucleotides whose termini are not complementary to the RNA template sequence 5'-CAACCCCAA-3'. These data suggest that telomerase may be able to heal chromosomes directly in vivo.  相似文献   

17.
A O Wilkie  J Lamb  P C Harris  R D Finney  D R Higgs 《Nature》1990,346(6287):868-871
The instability of chromosomes with breaks induced by X-irradiation led to the proposal that the natural ends of chromosomes are capped by a specialized structure, the telomere. Telomeres prevent end-to-end fusions and exonucleolytic degradation, enable the end of the linear DNA molecule to replicate, and function in cell division. Human telomeric DNA comprises approximately 2-20 kilobases (kb) of the tandemly repeated sequence (TTAGGG)n oriented 5'----3' in towards the end of the chromosome, interspersed with variant repeats in the proximal region. Immediately subtelomeric lie families of unrelated repeat motifs (telomere-associated sequences) whose function, if any, is unknown. In lower eukaryotes the formation and maintenance of telomeres may be mediated enzymatically (by telomerase) or by recombination; in man the mechanisms are poorly understood, although telomerase has been identified in HeLa cells. Here we describe an alpha thalassaemia mutation associated with terminal truncation of the short arm of chromosome 16 (within band 16p13-3) to a site 50 kb distal to the alpha globin genes, and show that (TTAGGG)n has been added directly to the site of the break. The mutation is stably inherited, proving that telomeric DNA alone is sufficient to stabilize the broken chromosome end. This mechanism may occur in any genetic disease associated with chromosome truncation.  相似文献   

18.
F Aboul-ela  A I Murchie  D M Lilley 《Nature》1992,360(6401):280-282
Multistranded DNA structures based upon guanine association have been proposed to be important in the structure of chromosome telomeres and in immunoglobulin class switching. Nucleic acids containing runs of guanine bases form a number of structures in vitro, including fold-back structures (Fig. 1a) and parallel-stranded quadruplex structures in DNA and RNA. The features of fold-back structures have now been determined at high-resolution. The different structures are probably based on a tetrad of hydrogen-bonded guanine bases (Fig. 1b), with buffer conditions and sequence effects mediating isomerization between the different forms. Here we use NMR spectroscopy to investigate the solution structure of the complex formed by the hexadeoxynucleotide d(TG4T) in the presence of sodium ions. We have observed the formation of a parallel-stranded quadruplex containing hydrogen-bonded tetrads of guanine. The parallel-stranded form differs significantly from the fold-back form, with individual nucleotide conformations being closer to those of B-form DNA.  相似文献   

19.
Homopyrimidine oligonucleotides bind to homopurine-homopyrimidine sequences of duplex DNA forming a local triple helix. This binding can be demonstrated either directly by a footprinting technique, gel assays, or indirectly by inducing irreversible reactions in the target sequence, such as photocrosslinking or cleavage. Binding occurs in the major groove with the homopyrimidine oligonucleotide orientated parallel to the homopurine strand. Thymine and protonated cytosine in the oligonucleotide form Hoogsteen-type hydrogen bonds with A.T and G.C Watson-Crick base pairs, respectively. Here we report that an 11-residue homopyrimidine oligonucleotide covalently attached to an ellipticine derivative by its 3' phosphate photo-induces cleavage of the two strands of a target homopurine--homopyrimidine sequence. To our knowledge, this is the first reported case of a sequence-specific artificial photoendonuclease. In addition we show that a strong binding site for a free ellipticine derivative is induced at the junction between the triplex and duplex structures on the 5' side of the bound oligonucleotide. On irradiation, cleavage is observed on both strands of DNA. This opens new possibilities for inducing irreversible reactions on DNA at specific sites by the synergistic action of a triple helix-forming oligonucleotide and an intercalating agent.  相似文献   

20.
Telomeres shorten during ageing of human fibroblasts   总被引:132,自引:0,他引:132  
C B Harley  A B Futcher  C W Greider 《Nature》1990,345(6274):458-460
The terminus of a DNA helix has been called its Achilles' heel. Thus to prevent possible incomplete replication and instability of the termini of linear DNA, eukaryotic chromosomes end in characteristic repetitive DNA sequences within specialized structures called telomeres. In immortal cells, loss of telomeric DNA due to degradation or incomplete replication is apparently balanced by telomere elongation, which may involve de novo synthesis of additional repeats by novel DNA polymerase called telomerase. Such a polymerase has been recently detected in HeLa cells. It has been proposed that the finite doubling capacity of normal mammalian cells is due to a loss of telomeric DNA and eventual deletion of essential sequences. In yeast, the est1 mutation causes gradual loss of telomeric DNA and eventual cell death mimicking senescence in higher eukaryotic cells. Here, we show that the amount and length of telomeric DNA in human fibroblasts does in fact decrease as a function of serial passage during ageing in vitro and possibly in vivo. It is not known whether this loss of DNA has a causal role in senescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号