首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 607 毫秒
1.
设H为无限维复可分的Hilbert空间, B(H)为H上的有界线性算子的全体。 T∈B(H)称为是满足a-Weyl定理, 若σa(T)\σaw(T)=πa00(T), 其中σa(T), σaw(T)分别表示算子T∈B(H)的逼近点谱和本质逼近点谱, πa00(T)={λ∈iso σa(T):0<dim N(T-λI)<∞}。 本文通过定义新的谱集, 给出了算子演算满足a-Weyl定理的判定方法, 同时也考虑了a-Weyl定理的摄动。  相似文献   

2.
设H为无限维复可分的Hilbert空间,B(H)为H上的有界线性算子的全体, T∈B(H)称为满足(R)性质,若σa(T)\σab(T)=π00(T),其中σa(T)和σab(T)分别表示算子T的逼近点谱和Browder本质逼近点谱,π00(T)={λ∈iso σ(T):0<dim N(T-λI)<∞}。 利用拓扑一致降标性质,首先给出了有界线性算子满足(R)性质的充要条件; 之后通过拓扑一致降标性质,得到了算子函数满足(R)性质的判定方法; 最后,上三角算子矩阵的(R)性质得到了研究。  相似文献   

3.
令H为复的无限维可分的Hilbert空间, B(H)为H上有界线性算子的全体。称算子T∈B(H)满足Weyl定理, 若σ(T)\σw(T)=π00(T), 其中σ(T)和σw(T)分别表示算子T的谱集与Weyl谱, π00(T)={λ∈iso σ(T):0相似文献   

4.
令H为无限维复可分的Hilbert空间,H上有界线性算子的全体为B(H).用σ(T),σab(T)和σa(T)分别表示为算子T∈B(H)的谱集,Browder本质逼近点谱和逼近点谱.称算子T∈B(H)满足(R)性质,若σa(T)σab(T)=π00(T),其中π00(T)={λ∈iso σ(T)∶0相似文献   

5.
若σ(T)\σw(T)=π00(T), 则称T∈B(H)满足Weyl定理。 T∈B(H)满足Weyl定理的紧摄动: 如果对任意的紧算子K∈B(H), T+K都满足Weyl定理本文给出了一种Weyl谱的变体, 根据该变体讨论了T 3和T满足Weyl定理的紧摄动的关系。  相似文献   

6.
设H为无限维复可分的Hilbert空间,B(H)为H上的有界线性算子的全体。T∈B(H)称为是满足a Weyl定理,若σa(T)\σaw(T)=πa00(T),其中σa(T),σaw(T)分别表示算子T∈B(H)的逼近点谱和本质逼近点谱,πa00(T)={λ∈isoσa(T):0dimN(T-λI)∞}。本文通过定义新的谱集,给出了算子演算满足a Weyl定理的判定方法,同时也考虑了a Weyl定理的摄动。  相似文献   

7.
设H为无限维复可分的Hilbert空间,B(H)为H上的有界线性算子的全体.T∈B(H)称为满足(R1)性质,若σa(T)\σab(T)?π00(T),其中σa(T)和σab(T)分别表示算子T的逼近点谱和本质逼近点谱,π00(T)={λ∈isoσ(T):0相似文献   

8.
设H为复的无限维可分Hilbert空间,B(H)为H上有界线性算子的全体.若σ(T)\σw(T)=πoo(T),则称T∈B(H)满足Weyl定理,其中σ(T)和σw(T)分别表示算子T的谱和Weyl谱,πroo(T)={λ∈isoσ(T):0dimN(T-λI)∞};当σ(T)\σw(T)∈roo(T)时,称T∈B(H)满足Browder定理.本文利用算子的广义Kato分解性质,刻画了算子在微小紧摄动下单值延拓性质(SVEP)与Weyl型定理之间的关系.  相似文献   

9.
设C是复数域, H是C上无穷维可分的 Hibert 空间,B(H)及K(H) 分别表示H上有界线性算子和紧算子的全体.若T∈B(H),记σ(T),σa(T),σea(T)及σja(T) 分别表示T的谱, 近似点谱,本质近似点谱及联合近似点谱[1,2].  相似文献   

10.
设H为复的无限维可分的Hilbert空间,B(H)为H上的有界线性算子的全体。若σ(T)\σ_w(T)=π00(T),则称T∈B(H)满足Weyl定理,其中σ(T)和σ_w(T)分别表示算子T的谱和Weyl谱,π00(T)表示谱集中孤立的有限重特征值的全体。首先给出了Hilbert空间上有界线性算子WeylKato分解的定义,并由Weyl-Kato分解的性质定义了一种新的谱集,利用该谱集刻画了算子函数演算满足Weyl定理的充要条件。  相似文献   

11.
算子T∈B(H)称作有(ω1)性质,如果σa(T)\σea(T)(∈)00(T),其中σa(T)和σea(T)分别表示算子T的逼近点谱和本性逼近点谱,π00(T)={λ∈iso σ(T):0<dim N(T-λI)<∞}.本文研究了Helton类算子的(ω1)性质的稳定性,同时研究了2x2上三角算子矩阵在紧摄动下的(ω1)性质的稳定性.  相似文献   

12.
研究了Hilbert空间上有界线性算子T的Weyl型定理的判定方法及等价性.根据一致Fredholm指标性质,定义了一种新的谱集2σ(T),通过该谱集和拓扑一致降标集ρτ(T)之间的关系,证明了:算子T满足Browder定理当且仅当ρτ(T)bρ(T)∪1σ(T)∪2σ(T);T满足Weyl定理当且仅当0π0(T)ρτ(T)bρ(T)∪1σ(T)∪2σ(T),其中bρ(T)={λ∈C:T-λI为Browder算子},1σ(T)为本质逼近点谱的一种变化,0π0(T)为谱集中孤立的有限重的特征值的全体;算子T与T*均满足a-Browder定理当且仅当ρτ(T)aρb(T)∪2σ(T)∪intSσF(T)∪{λ∈C:des(T-λI)∞},其中aρb(T)={λ∈C:T-λI为上半Fredholm算子且有有限的升标},SσF(T)和des(T)分别表示算子T的半Fredholm谱以及降标.  相似文献   

13.
本文建立了有界线性算子的一种函数演算,并得到了这种演算的谱映射定理: 引理1 设T∈D(X)-B(X),ρ(T)≠Φ,则存在S∈B(X)及ξ∈C,λ∈σ_c(S),使T=f_(ξ,λ)(S) 定理1 设T∈B(X),则对ξ∈C,λ∈σ_c(T), 我们有: 1)σ(f_(ξ,λ)(T))=f_(ξ,λ)(σ(T)); 2)σ(f_(ξ,λ)(T)(x)=f_(ξ,λ)(σ_T(x)),x∈X 通过这种演算,可以把无界封闭线性算子表示成有界线性算子函数。利用这种函数演算和相应的谱映射定理,我们证明了无界封闭线性算子是可分解(谱)算子的充要条件是它是有界可分解(谱)算子的函数。  相似文献   

14.
称有界线性算子 T满足(ω1)性质, 如果T的上半Weyl谱在它的逼近点谱中的补集包含在它的谱集中孤立的有限重的特征值的全体中。根据单值扩张性质定义了一种新的谱集, 利用该谱集给出了Hilbert 空间中有界线性算子满足(ω1)性质的充分必要条件。作为应用, 给出了亚(或超)循环算子类满足(ω1)性质的等价刻画。  相似文献   

15.
Banach空间上有界线性算子的广义谱分析   总被引:1,自引:0,他引:1  
在文献[1]的基础上,进一步在Banach空间上讨论了有界线性算子T的广义谱集σG(T),证明了当λ∈σR(T)∪σP(T)时R(Tλ)闭,则σG(T)即为经典谱分类中的T的连续谱集σC(T).  相似文献   

16.
若算子T有σ(T)\σw(T)■π00(T)成立,则称T满足Browder定理,其中σ(T)和σw(T)分别表示算子T的谱和Weyl谱,且π00(T)={λ∈isoσ(T),0相似文献   

17.
令B(H)为无限复可分的Hilbert空间H上的有界线性算子全体。若T∈B(H),定义H(T)为在T的谱集σ(T)的某个邻域上解析但在σ(T)的任一分支上不为常数的函数全体。利用新定义的谱集,研究了算子T及f(T)(f∈H(T))的Weyl定理,并刻画了T和f(T)满足Weyl定理的等价条件。另外利用所得的结论,探索了p-hyponormal(或M-hyponormal)算子的Weyl定理。  相似文献   

18.
设T是作用在Hilbert空间H上的有界线性三角算子.σΔ(T)表示T的三角扩张谱,σΔ(T)={λ∈C存在b∈L(C,H)使得Tb0λ(H)/(C)不是三角算子}.本文证明了如果H1,H2…Hn是三角算子T的不变子空间,σ(T|Hi)∩σ(T|Hj)=,i≠j,H=ni=1Hi,则σΔ(T)=∪ni=1σΔ(T|Hi).如果T∈Bn(Ω)是强不可约的,σ(T)=,Ω=,则λ∈σΔ(T)当且仅当存在b∈L(C,H),使得Tb0λ(H)/(C)是强不可约的.本文还给出了一类半三角算子加小的紧算子相似于其三角算子部分.  相似文献   

19.
首先讨论了Dirichlet空间上Toeplitz算子组Fredholm谱的表示,证明了:当φi∈H∞1(D) C1()(i=1,2,...,n)时,(Tφ1,Tφ2,…,Tφn)的右Fredholm谱SP, re(Tφ1,Tφ2,…,Tφn)与Fredholm谱SP, e(Tφ1,Tφ2,…,Tφn)相同;当φi∈C1()(i=1,2,...,n)时,(Tφ1,Tφ2,…,Tφn)的左Fredholm谱 SP, le(Tφ1,Tφ2,…,Tφn)与Fredholm谱SP, e(Tφ1,Tφ2,…,Tφn)相同.然后讨论了Dirichlet空间上Toeplitz算子与算子组的凸性问题.证明了乘法算子Mz是非凸型的,这与Hardy, Bergman空间上所有乘法算子都是凸型算子不同.也证明了:T=(Tz,Tz2)不是联合凸型算子;若φi∈H∞1(D) (i=1,2,…, n),则W(Tφ1,Tφ2,…,Tφn)是凸集.本文还给出了一个一般性的结论:假定H为Hilbert空间,T∈B(H)为一个有界线性算子,当n=2m时有σ(Tm,Tn)={(λm,λn)λ∈σ(T)}.  相似文献   

20.
以半Fredholm摄动理论思想为基础,定义新的谱集,利用该谱集刻画有界线性算子及其算子函数演算的(ω)性质。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号