首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 203 毫秒
1.
The Os isotopic composition and evolution of con-vecting upper mantle (CUM) are an important and diffi-cult scientific issue related to the distributions of PGEs inearth’s interior and the accretion history of the earth. De-termination of 187Os/188Os of modern CUM has been at-tempted via analyses of abyssal peridotites, mid-oceanridge basalts (MORB), MORB glasses and sulfides. Abyssal peridotites, which are mantle samples re-covered from the ocean ridges, represent the upperm…  相似文献   

2.
Zhenyuan gold deposit is the largest super large gold deposit in the Ailaoshan gold belt,but its precise mineralization age is still lack.Re-Os isotopic age of the auriferous pyrite from the Zhenyuan gold deposit was determined by using a high-resolution inductively coupled plasma mass spectrometry(HR-ICP-MS).The pyrite samples were decomposed in carius tubes,Os was separated by distillation and Re was extracted by acetone,respectively.The results show that the Re-Os isochron age is 229±38 Ma(MSWD=2.0,confidence level is 95%),with an initial 187 Os/188 Os value of 0.68±0.24 and a corresponding Os value of 442±91.The Re/Os ratios of the pyrite vary from 40.8 to 100.5.The data suggest that at least one important ore-forming event was occurred during Indosinian epoch,and the ore-forming materials probably derived from mixed sources of crustal and mantle,while the later dominated.The Ailaoshan composite orogen experienced complicated evolutional processes,including formation of Precambrian-Early Paleozoic basement,subduction and orogenesis of Late Paleozoic era,collisional orogenesis of Late Hercynian-Indosinain epoch,and extensional or striking orogenesis of Yanshainan-Cenozoic epoch.The polycycle tectonic evolution and magmatism in this area caused multi-stage and superposition metallization characteristics of the Zhenyuan gold deposit:the mineralization probably occur mainly during the Indosinian collisional orogeny,while the minor gold ores of altered granite-porphyry and altered lamprophyre may be formed in the late superposition metallization.  相似文献   

3.
Re-Os dating of the Raobazhai ultra mafic massif in North Dabie   总被引:6,自引:2,他引:4  
The ultramafic massif at Raobazhai in North Dabie is located in the suture zone between the Yangtze craton and North China eraton. The Re-Os isotope compositions of the massif are used to decipher the origin and tectonics of the ultramafic rocks involved in continental subduction and exhumation. Fifteen samples were collected from five drill holes along the main SE-NW axis of the Raobazhai massif. Major and trace element compositions of the samples show linear correlations between MgO, Yb and Al_2O_3. This suggests that the massif experienced partial melting with variable degrees and is from fertile to deplete in basaltic compositions. Nine selected samples were analyzed for Re-Os isotope compositions. Re contents range from 0.004 to 0.376 rig/g, Os contents from 0.695 to 3.761 ng/g, ~(187)Re/~(188)Os ratios from 0.022 to 2.564 and ~(187)Os/~(188)Os ratios from 0.1165 to 0.1306. These indicate that the massif is a piece of continental lithospheric mantle with variable depletion. Using the positive corre  相似文献   

4.
In situ U-Pb dating and Lu-Hf isotopic analysis were carried out for detrital zircons from quartzite in the Paleoproterozoic Songshan Group on the southern margin of the North China Craton (NCC). The re- sults provide further constraints on the crustal formation and evolution history of NCC. Four 207Pb/206Pb age populations were obtained from 99 analyses, with clusters at ~3.40 Ga, 2.77―2.80 Ga, ~2.50 Ga and 2.34 Ga, respectively. The 3.40 Ga old zircons have similar Hf isotopic compositions to those from Ar- chean rocks in the Jidong and Anshan areas of NCC. However, crustal remnants older than 3.6 Ga have been identified in the southern margin of NCC, the South China Craton, the northwestern part of the Qinling Orogen and its adjacent area. Thus, it is not easy to trace the source rock from which the 3.40 Ga detrital zircons were derived. It can be inferred that the crustal remnants older than 3.40 Ga might have been widely distributed in the North China Craton. The 2.77―2.80 Ga zircons make up a relatively small proportion and have the highest εHf (t) values (up to 6.1±1.6), consistent with the Hf isotopic composition of the depleted mantle at 2.83 Ga. Their single-stage Hf model age of 2.83 Ga is close to their crystallized age, suggesting that their source rocks were extracted from the contemporaneous depleted mantle. The ~2.50 Ga zircon grains constitute about 85% of the total grain population and their Hf isotopic compositions indicate major growth of juvenile crust at ~2.50 Ga but minor reworking of ancient crust. The youngest zircon dated in this study gave an U-Pb age of 2337±23 Ma, which can be considered the maximum depositional age of the formation of the Songshan Group.  相似文献   

5.
Three Chinese ordinary chondrites,including Jilin (H5),Boxian (LL3.8) and Lujiang (LL6),have been studied for their Re and Os abundances and Os isotopic composition in whole-chondrite samples,separated magnetic and nonmagnetic fractions,and nodules. The results indicate that the Re and Os abundances of the whole-chondrite samples are in the ranges of corresponding H-and LL-Groups,respectively. The Re and Os abundances of magnetic fraction from Boxian and Lujiang are within the range of high-Os ⅡAB and ⅢAB irons,whereas those of nonmagnetic fractions of Boxian and Lujiang are lower than the whole-chondrite values. The Re and Os abundances of nodules in Jilin are in the range of the LL-Group. 187Re/188Os and 187Os/188Os ratios of the three whole chondrites are in the range of ordinary chondrites which locate around the isochron of ⅡAB ⅢAB irons. 187Re/188Os and 187Os/188Os ratios of the magnetic and nonmagnetic fractions from Boxian have a larger difference. The nonmag-netic fraction of Lujiang may contain a recent addition of Re,which causes deviation of the 187Re/188Os ratio from the irons isochron. The Re and Os abundances of nodules in Jilin are lower than those of the whole-chondrite,but their 187Os/188Os ratios are higher than that of the whole chondrite.  相似文献   

6.
In situ U-Pb dating and Lu-Hf isotopic analysis were carried out for detrital zircons from quartzite in the Paleoproterozoic Songshan Group on the southern margin of the North China Craton (NCC). The results provide further constraints on the crustal formation and evolution history of NCC. Four ^207Pb/^206Pb age populations were obtained from 99 analyses, with clusters at -3.40 Ga, 2.77-2.80 Ga, -2.50 Ga and 2.34 Ga, respectively. The 3.40 Ga old zircons have similar Hf isotopic compositions to those from Archean rocks in the Jidong and Anshan areas of NCC. However, crustal remnants older than 3.6 Ga have been identified in the southern margin of NCC, the South China Craton, the northwestern part of the Qinling Orogen and its adjacent area. Thus, it is not easy to trace the source rock from which the 3.40 Ge detrital zircons were derived. It can be inferred that the crustal remnants older than 3.40 Ga might have been widely distributed in the North China Craton. The 2.77-2.80 Ga zircons make up a relatively small proportion and have the highest εHf(t) values (up to 6.1±1.6), consistent with the Hf isotopic composition of the depleted mantle at 2.83 Ga. Their single-stage Hf model age of 2.83 Ga is close to their crystallized age, suggesting that their source rocks were extracted from the contemporaneous depleted mantle. The -2.50 Ga zircon grains constitute about 85% of the total grain population and their Hf isotopic compositions indicate major growth of juvenile crust at -2.50 Ga but minor reworking of ancient crust. The youngest zircon dated in this study gave an U-Pb age of 2337±2.3 Ma, which can be considered the maximum depositional age of the formation of the Songshan Group.  相似文献   

7.
Backscattered electron images, in situ Hf isotopes, U-Pb ages and trace elements of zircons in a banded granulite xenolith from Hannuoba basalt have been studied. The results show that the banded granulite is a sample derived from the early lower crust of the North China craton. It is difficult to explain the petrogenesis of the xenolith with a single process. Abundant information on several processes, however, is contained in the granulite. These processes in-clude the addition of mantle material, crustal remelting, metamorphic differentiation and the delamination of early lower crust. About 80% of zircons studied yield ages of 1842 ±40 Ma, except few ages of 3097-2824 Ma and 2489-2447 Ma. The zircons with ages older than 2447 Ma have high εHf (up to +18.3) and high Hf model age (2.5-2.6 Ga), indicating that the primitive materials of the granulite were derived mainly from a depleted mantle source in late Archean. Most εhf of the zircons with early Proterozoic U-Pb age vary around zero, but two have  相似文献   

8.
Laoyaling is a typical stratiform deposit in the Tongling district and the molybdenum orebody is hosted by black shale of the Dalong Formation of the Upper Permian system. Eight black shale samples from the Laoyaling Mo orebody were dated by Re-Os technique using ICP-MS, which give an isochron age of 234.2±7.3 Ma with an initial 187Os/188Os ratio of 1.37±0.39. The apparent Re-Os age is a few million years younger than the depositional age of the Late Permian. The young isochron age may be caused by the later hydrothermal disturbance or mass fractionation during ICP-MS measurement. However, the obtained isochron age is close to the depositional age and far earlier than those of the Late Yanshanian intrusions. It suggests that the Mo ore of the Laoyaling deposit is sedimentary in origin and not related to the Late Yanshanian magmatism. Black shales of the Upper Permian are distributed widely in the Mid-Lower Yangtze region, our result is important for understanding the ore-forming processes in the regio  相似文献   

9.
Early-crystallizing chromian spinel(Cr-spinel) in the Nagqu ophiolite has high Os and low Re contents,and it is resistant to alteration during serpentinization,weathering and metamorphism.The chemical composition of primitive magma is preserved in Cr-spinel,which makes it suitable for determining the initial Os-isotope composition of the mantle source.This study presents Cr-spinel Os isotopes and zircon U-Pb ages for cumulate dunite and gabbro,respectively,in the same cumulate section of the ophiolite at Nagqu in Tibet.The results shed light on the formation and evolution of lithospheric mantle.The Nagqu ophiolite is located in the central part of the Bangong-Nujiang suture zone.It is a remnant of the Neotethyan oceanic crust,and contains cumulate dunite and gabbro.Zircon from the gabbro yielded a weighted mean 206 Pb/238 U age of 183.7±1 Ma.Cr-spinel exhibits Os values of 0.2 to 0.3,suggesting that the mantle source for the dunite is similar to that of carbonaceous chondrites.Thus,the Tibetan lithosphere is primarily a relic of Tethyan oceanic lithosphere,which has formed by the transformation of the normal asthenospheric mantle in the Mesozoic.This is the first study to combine the spinel Os isotopes with accurate zircon U-Pb ages to constrain the geochemical characteristics of the mantle source for the ophiolite.  相似文献   

10.
The Maoling gold deposit, one of the large gold deposits in eastern Liaoning Province, NE China, is an arsenopyrite-disseminated gold deposit with a resource of approximately 25 t Au and an average Au grade of 3.2 g/t. Six arsenopyrites closely related to Au mineralization of the Maoling gold deposit are dated by Re-Os technique and define a Re-Os isochron with an age of 2316±140 Ma, which suggests that the deposit was formed in the Paleoproterozoic era rather than in the Indosinian period as some early researchers suggested. High initial ^187Os/^188Os ratio of 1.32±0.48 indicates a crustal derivation of the ore-forming material of the deposit, which may be derived from rocks of the Gaixian formation of the Liaohe Group. Furthermore,the result also implies that the age of the Gaixian Formation in the Maoling district is older than 2316±140 Ma.  相似文献   

11.
The 2.5 Ga Guyang greenstone belt is a major lithological unit in the northwestern part of the North China Craton. Komatiites have recently been identified to occur within the lower part of the meta-volcanic sedimentary sequence of the greenstone belt. The biggest komatiite near Guyang has been mapped out, which is 500 m long and 50 m wide lenticular block. Re-Os isotopic compositions of 9 samples were analyzed to date the komatiites. The Os contents are from 0.88 to 2.63 ppb, identical with typical komatiites, and slightly lower than the normal mantle. The 187Os/188Os ratios are from 0.1115 to 0.1197, which are lower enough to exclude the origin of Phanerozoic magma as widely developed in adjacent areas. The calculated Re depletion model ages (T RD) are from 1346 to 2454 Ma, among them the oldest age of 2454 Ma gives the minimum evaluation for the formation age of the Guyang komatiite. Therefore, the komatiites are a part of the Guyang greenstone belt, indicating high degree melting of mantle during ~2.5 Ga crustal growth event.  相似文献   

12.
The187Os/188Os ratios of spinel lherzolite xenoliths from Panshishan determined with N-TIMS are lower than that of the primitive mantle, which shows depleted mantle characteristics. Their positive correlation with Al2O3/MgO suggests that the geochemical behavior of trace elements Re and Os is similar to that of Al2O3 and MgO respectively during the magmatic evolution and Re-Os isotopic system is largely immune to mantle metasomatism. A model age of 2.8–3.4 Ga obtained by187Os/188Os-Al2O3/ MgO correlation might represent the homogeneous age of the mantle lithosphere beneath the area.  相似文献   

13.
The osmium isotopic ratio of187Os/188Os ranging from 0.126 to 0.127 for the primitive upper mantle (PUM) is obtained according to the correlation between187Os/188Os and Al2O3 of mantle-derived xenoliths and orogenic peridotites, which consists with Allegre and Luck’s ALM value and similar to Yin’s nuggets uniform reservoir (NUR) value. It shows that the Os isotope ratio is lower than enstatite or ondinary chondrites, similar to carbonaceous chondrites (CV3).  相似文献   

14.
The paleo oceanenvironmentalchangeduringthePrecambrian Cambriantransitionisakeyissuere latedtothecausesforanexplosiveradiationofdiffer entmetazoanphyladuringtheEarlyCambrianera .Thechemicalandisotopiccompositionsofmarinesed iments (carbonates ,phosphorites ,siliceousrocks ,andblackshales)recordthechangingcompositionandphysicalconditionsoftheseawaterinwhichtheserocksaccumulated .Organiccarbon richblackshalesfrommarineenvironmentsarecommonlyenrichedinanumberoftraceelementssuchasNi,Mo ,V ,Co ,…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号