首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用高温固相法制备了Na+掺杂的荧光粉Li1-xNaxNbO3∶Pr3+. 在不改变晶体结构的条件下,掺杂Na+提高了荧光粉Li1-xNaxNbO3∶Pr3+蓝色光激发的发射强度,其最佳掺杂计量比x=0.05. 将荧光粉负载到铝合金板上,对金属板施加拉力时,LiNbO3∶Pr3+的光致发光强度随应力的增大发生骤增现象. 随着x的增加,骤增现象逐渐消失,因为Na+的掺杂改变了Pr3+周围的不对称性,影响了LiNbO3∶Pr3+的力诱导发光特性.  相似文献   

2.
寻找能应用于白光LED的红色荧光粉,以稀土氧化物为原料,采用高温固相法制备Pr3+掺杂Sr2LaTaO6系列红色荧光粉,再通过XRD、SEM及荧光光谱仪等仪器对样品的物相结构、形貌特征、荧光特性、衰减寿命和荧光热猝灭等性能进行实验分析。结果表明:样品物相纯正、结晶度好,Pr3+的掺杂没有改变基质的晶体结构;样品可以被蓝光有效激发,发出色坐标为(0663 0,0336 6)的红光;Pr3+的最佳掺杂浓度(摩尔分数)为01%,随着Pr3+掺杂浓度(摩尔分数)不断高于该浓度,其荧光强度和衰减寿命都会递减;样品在室温到400 K这一温度范围内热稳定性良好。表明Pr3+掺杂的Sr2LaTaO6红色荧光粉有望应用于白光LED。  相似文献   

3.
以硫脲为硫源,采用燃烧法制备了Zn0.5Cd0.5S:Eu3+半导体材料.研究了Eu掺杂量对Zn0.5Cd0.5S:Eu3+半导体材料的结构,形貌,固体漫反射以及发光性能的影响.利用X-射线粉末衍射仪(XRD),扫描电子显微镜(SEM),紫外-可见分光光度计(UV-vis)和荧光分光光度计(PL)对样品进行了表征.结果表明:Eu掺杂量对样品的结构和形貌没有明显的变化,但对其发光性能却有着显著地影响.当Eu掺杂量为3%时所制备的Zn0.5Cd0.5S:Eu3+半导体材料的发光性能为最强.  相似文献   

4.
通过高温固相法合成Pr3+掺杂Sr3Y2TeO9红色荧光材料,并分析样品的物相与形貌、发光性能、浓度猝灭规律以及荧光衰减寿命等性能。结果表明:合成获得的单一相的Pr3+掺杂Sr3Y2TeO9样品,能够被450~490 nm左右的波长有效激发,发射出波长为612 nm的红光;不同物质量浓度的Pr3+掺杂会影响荧光强度,最佳Pr3+掺杂浓度为x=0003;Pr3+之间的电偶极 电偶极作用是导致荧光浓度猝灭发生的原因;x=0003 Pr3+掺杂Sr3Y2TeO9的衰减寿命约为7676 μs。因此Pr3+掺杂的Sr3Y2TeO9红色荧光粉有望用于白光LED。  相似文献   

5.
采用固相反应法制备了Sr1-xBi2Ta2O9:xPr3+(SBT:xPr3+)和Sr1-xBi2Ta2O9:xEu3+(SBT:xEu3+)红色荧光粉材料。通过X射线衍射和扫描式电子显微镜图谱,分析和研究了在低掺杂浓度时,掺杂离子对SrBi2Ta2O9的晶体结构和形貌的影响。利用荧光光谱仪测试了SBT:xPr3+和SBT:xEu3+荧光粉的激发和发射光谱。当样品SBT:xPr3+采用449 nm激发时,其主发射峰位于616 nm和653 nm;样品SBT:xEu3+采用464 nm激发时,其主发射峰位于590 nm和616 nm。作为一种潜在的LED用红色荧光粉,其温度稳定性也是十分重要的性质之一。本文对样品SBT:0.02Pr3+和SBT:0.2Eu3+在50~300℃之间的温度稳定性进行了分析。  相似文献   

6.
采用流延成型和固相反应法制备Sm_(0.5)Sr_(0.5)Co_(1-x)Mo_xO_(3-δ)(0≤x≤0.5)陶瓷。研究不同Mo掺入量对Sm_(0.5)Sr_(0.5)CoO_(3-δ)的结构和光学性能的影响。结果表明:当x≥0.1时,样品主相为钙钛矿结构,但相继出现新相SrCo_(0.5)Mo_(0.5)O_3和SrMoO_4;随着Mo~(6+)的引入和掺杂量的增加,样品的吸收率和发射率均增加,选择吸收比下降;掺入Mo~(6+)样品的室温和高温电导率值均下降,主要是因为掺入离子减少了Co~(3+)-O-Co~(4+)反应单元和阻碍了双交换反应的进行,生成的低导电杂相又破坏了原连续的导电通路。电导率值的变化直接影响样品的发射率值,电导率降低对应发射率升高。  相似文献   

7.
用传统的固相烧结工艺,制备了铌掺杂SrBi_4Ti_4O_(15)(SBTi)铁电陶瓷SrBi4-x/3Ti4-xNbxO15(SBTN-x),Nb掺杂量x=0.00,0.003,0.012,0.03和0.06.X射线衍射的结果表明,所有样品均为单一的层状钙钛矿结构相,Nb掺杂未改变SBTi的晶体结构.铁电测量结果表明,Nb掺杂使SBTi的铁电性能得到较大改善.随掺杂量x的增加,样品的剩余极化(2Pr)呈现出先增大,后减小的规律.在x=0.03时,2Pr达到最大值24.7μC/cm2,而SrBi4Ti4O15的2Pr仅为15.8μC/cm2,掺杂使2Pr提高近60%.同时,样品的矫顽场几乎不随掺杂量的改变而变化.掺杂后,样品的居里温度变化很小,表明Nb对SrBi_4Ti_4O_(15)的B位掺杂基本未影响材料的热稳定性能.  相似文献   

8.
采用固相法制备Ba2+掺杂Y0.75Bi0.15Sm0.10VO4荧光粉粉末样品.用X射线衍射和荧光分光光度计对样品的结构和光学性质进行了研究.结果表明:Ba加入并没有改变样品的晶体结构,但大大提高了荧光粉的发光强度.相关机理在文中给出了解释.  相似文献   

9.
La_(0.67)Sr_(0.33)Mn_(1-x)Fe_xO_3体系的正电子湮没研究   总被引:1,自引:0,他引:1  
采用固相反应方法制备了名义成分为La0.67Sr0.33Mn1-xFexO3(0x0.2)的系列样品.利用X射线衍射、激光拉曼、正电子湮灭等实验手段并结合输运测量,对该系列样品进行了研究.结果表明,各样品均为正交钙钛矿结构;随着掺杂量的增加,样品的电阻率ρ急剧变大,绝缘体-金属转变峰随着掺杂浓度x的增加,峰值对应温度向低温区移动,这是由于样品内部晶体结构的变化所导致的.掺杂样品中缺陷及电子结构的变化与掺杂浓度密切相关,这主要是由于样品中的Mn3+被Fe3+所替代,部分Mn3+-O2-Mn4+铁磁双交换作用键被打断,样品中的铁磁与反铁磁作用的相互竞争以及样品内部电子局域化所形成的极化行为等因素的影响所导致的.  相似文献   

10.
采用固相烧结工艺制备了LaxBi1-xFe0.5Co0.5O3(BLFCO-x,x=0.00,0.05,0.15,0.30)陶瓷样品,研究了La掺杂对BiFe0.5Co0.5O3陶瓷结构、漏电流、磁性能以及介电性能的影响.X射线衍射测试结果显示,BLFCO-x样品基本形成了BFCO的相,但随着La的掺杂,晶格常数发生改变,结构向四方相转变.少量La离子的掺入降低了BFCO的漏电流.在常温下,随着La离子浓度的增大,BLFCO-x样品的磁性逐渐下降.样品的变温介电结果表明,当La离子浓度较小时,存在两个介电峰,但La离子浓度较大时,呈现单一介电峰.  相似文献   

11.
用固相烧结法制备了不同Nd掺杂量的SrBi4-xNdxTi4O15(SBNT-x,x=0.00~1.00)铁电陶瓷.X射线衍射谱显示Nd掺杂未改变SrBi4Ti4O15(SBTi)的晶体结构.铁电测量表明,适量的Nd掺杂使SBTi的剩余极化(2Pr)显著增加.当x=0.18时,2Pr达到极大值,为25.8μC/cm2,和未掺杂相比,增长约56%.样品的矫顽场在x=0.00到0.18之间几乎不变,而在更大掺杂量下,随掺杂量的增加而逐步减小.掺杂引起材料中点缺陷浓度降低和晶格畸变减小,这两种因素的共同作用决定了剩余极化的变化.变温介电谱显示,样品的居里温度随掺杂量的增加而下降.在掺杂量大于0.75以后,SBNT-x样品出现驰豫铁电体的典型特征.  相似文献   

12.
钙钛矿锰氧化物Pr1-xCaxMnO3(0.3≤x≤0.5)的结构和磁性研究   总被引:1,自引:0,他引:1  
通过固相反应法合成了Pr1-xCaxMnO3(x=0.3,0.4,0.5)系列多晶样品,对样品的结构和磁性进行了研究.XRD检测结果发现,样品均为单相,空间群为Pbnm.用超导量子磁强计(SQUID)对样品的磁性进行了研究,着重分析了掺杂浓度为x=0.4的Pr0.6Ca0.4MnO3样品.从测得的M-T曲线可知,在降温过程中,样品经历了电荷有序转变和反铁磁转变,电荷有序温度TCO=250K,反铁磁转变温度TN=170K.通过不同温度的M-H曲线,证实了样品在各个阶段的磁有序转变.  相似文献   

13.
以Eu2O3(99.99%),CaCl2.6H20(AR),Na2WO4.2H2O(AR)为原料,水热合成Eu3+掺杂的CaWO4系列荧光粉,通过XRD、荧光光谱等表征手段,考察荧光粉的晶体结构和三价铕离子的掺杂量对荧光粉体发光性能的影响.研究表明:由于Eu3+半径与Ca2+半径大小相当,Eu3+掺杂的CaWO4荧光粉并未引起其晶体结构的较大变化;在395 nm激发下,荧光粉Ca1-xWO4∶xEu3+的基质CaWO4由于WO42-内部的电荷跃迁产生主峰位于464 nm附近的宽带峰,掺杂的Eu3+分别在590 nm、616 nm处出现对应于Eu3+的5D0→7F15、D0→7F2跃迁的特征发射峰.随着Eu3+浓度的增加,616 nm红光发射强度增强,当Eu3+掺杂量为0.3%时,Ca1-xWO4∶xEu3+在395 nm激发下可得到接近白光效果的荧光发射,其对应的CIE色坐标为X=0.3602,Y=0.3528.  相似文献   

14.
高温固相反应法制备了系列Li_(2y-7)Sr_(4-1.5x)Eu_x(MoO_4)_y纳米荧光粉.XRD结果表明,铕、锂离子的掺入对样品晶体结构影响甚微,但SEM图像表明掺杂锂离子后,荧光粉颗粒平均尺寸变小.激发谱显示存在着396和466 nm两个强的激发峰.Sr_(4-1.5x)Eu_x(MoO_4)_4荧光粉在两种激发条件下,均获得强的617 nm红光,CIE坐标分别为(0.663,0.320)和(0.672,0.327).研究了荧光粉光致发光强度随掺铕和锶浓度的变化,优化浓度比为1.8:1.3.讨论了Li~+浓度对Sr_(4-1.5x)Eu_x(MoO_4)_4荧光粉发光谱的影响,优化掺锂浓度为2 mol%.  相似文献   

15.
在较低温度下,利用水热法和溶剂热法两种不同方法,分别制备了Pr3+/Tm3+共掺的六方相和四方相晶体结构LaOF纳米颗粒.在波长为355nm激光激发下,研究了LaOF∶Pr3+/Tm3+共掺纳米体系中Tm3+离子到Pr3+离子的能量转移效应,以及由此产生的Pr3+的荧光辐射.运用光谱学方法对共掺纳米体系荧光辐射性质进行了分析,并对相应的能量转移机理进行了探讨.结果表明:从Tm3+到Pr3+的能量转移源于Tm3+的1D2-3F4与Pr3+的3H4-3P0之间的交叉弛豫.同时,分析讨论了制作方法、样品环境温度、掺杂浓度等因素对能量转移效率和荧光光谱性质所产生的影响.  相似文献   

16.
采用传统固相烧结方法制备了Er~(3+)掺杂0.5Ba(Ti_(0.8)Zr_(0.2))O_3-0.5(Ba_(0.7)Ca_(0.3))TiO_3无铅压电陶瓷.考察了不同浓度Er~(3+)离子掺杂对其晶体结构和上转化发光性能的影响.XRD实验结果表明制备出的陶瓷样品均为纯的钙钛矿结构,且形成三方相和四方相的准同型相界.在980 nm波长激发下,陶瓷显现出明显的上转化发光性能,有3个明显的Er~(3+)特征峰,分别位于528,550 nm处绿光发射和661 nm处红光发射;当Er~(3+)掺杂量x=0.015 mol时,上转换发光性能达到最佳.该材料属于一种光-电多功能材料,即既具有上转换发光性能又具有铁电/压电性能.稀土掺杂0.5Ba(Ti_(0.8)Zr_(0.2))O_3-0.5(Ba_(0.7)Ca_(0.3))TiO_3固溶体的发光性能可以通过电场来调控.  相似文献   

17.
铋层状压电陶瓷具有较高的居里温度和良好的热稳定性,被广泛应用于高温、高频电子领域.本文采用传统固相合成法制备了K_(0.5)Bi_(4.5-x)Eu_xTi_4O_(15)高温铋层状无铅压电陶瓷,并详细研究了Eu3+掺杂对K_(0.5)Bi_(4.5-x)Eu_xTi_4O_(15)材料的结构与光电性能的影响.研究结果表明稀土Eu3+掺杂对K_(0.5)Bi_(4.5-x)Eu_xTi_4O_(15)陶瓷的相结构的影响不大:陶瓷均为均一致密的片层状结构.Eu3+掺杂一定程度上促进材料电性能的提高,当x=0.004时,陶瓷综合性能最佳:居里温度Tc=540℃、介电损耗tanδ=0.80%、压电系数d33=19pC/N及剩余极化强度2Pr=9.8μC/cm2.此外,掺杂后的陶瓷样品获得了光致发光性能,在526nm的蓝光激发下,样品呈现出明亮的橙红光.  相似文献   

18.
采用机械合金化和固相烧结技术,制备了V掺杂的Mn_(1.0)Fe_(0.9-x)V_xP_(0.5)Si_(0.5)(x=0,0.02,0.06,0.10,0.14,0.16)和Mn_(1.0)Fe_(0.9-x)V_xP_(0.5)Si_(0.5)(x=0,0.02,0.06,0.10,0.12)系列化合物.利用X射线衍射和磁性测量技术研究了材料的晶体结构、磁性和磁热效应.研究结果表明:两个系列化合物均结晶为Fe2P型六角结构;调整掺杂元素V的含量,可以将居里温度控制在188-375K范围;化合物的最大磁熵变随V含量增加而减少,化合物的热滞随V含量增加而减小,最小值为1K.  相似文献   

19.
用固相反应法制备了掺杂多晶样品Pr0.2Gd0.3Sr0.5MnO3,用X射线衍射仪(XRD)和超导量子磁强计(SQUID)对其磁性进行了研究.研究结果表明:样品的单相性很好,具有单一正交畸变钙钛矿结构,空间群为Pbnm;掺杂后的样品在低温区表现出铁磁态,整个温度区出现了两个磁转变温度点(TC1=305K,TC2=110K);当温度为110~305K时,样品呈现出铁磁-顺磁混合态.  相似文献   

20.
采用高温固相法合成Ca_3La_(7(1-x))Sm_(7x)(SiO_4)_6O_2橙红色荧光粉,并对其光致发光特性进行了系统的研究.讨论了Sm~(3+)掺杂浓度对荧光粉发光强度的影响,最佳掺杂浓度为5%.考了25-250℃温度下样品的发射光谱,结果表明其具有良好的温度特性.计算合成样品的色纯度,最高可达99.6%.研究结果表明,此荧光粉可以被近紫外光或蓝光有效激发,在白光LEDs领域中具有潜在应用价值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号