首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Separation of cells and organelles by bilayer membranes is a fundamental principle of life. Cellular membranes contain a baffling variety of proteins, which fulfil vital functions as receptors and signal transducers, channels and transporters, motors and anchors. The vast majority of membrane-bound proteins contain bundles of α-helical transmembrane domains. Understanding how these proteins adopt their native, biologically active structures in the complex milieu of a membrane is therefore a major challenge in today’s life sciences. Here, we review recent progress in the folding, unfolding and refolding of α-helical membrane proteins and compare the molecular interactions that stabilise proteins in lipid bilayers. We also provide a critical discussion of a detergent denaturation assay that is increasingly used to determine membrane-protein stability but is not devoid of conceptual difficulties.  相似文献   

2.
Here, we report the DNA sequence of the rhodopsin gene in the alga Cyanophora paradoxa (Glaucophyta). The primers were designed according to the conserved regions of prokaryotic and eukaryotic rhodopsin-like proteins deposited in the GenBank. The sequence consists of 1,272 bp comprised of 5 introns. The correspondent protein, named Cyanophopsin, showed high identity to rhodopsin-like proteins of Archea, Bacteria, Fungi, and Algae. At the N-terminal, the protein is characterized by a region with no transmembrane α-helices (80 aa), followed by a region with 7α-helices (219 aa) and a shorter 35-aa C-terminal region. The DNA sequence of the N-terminal region was expressed in E. coli and the recombinant purified peptide was used as antigen in hens to obtain polyclonal antibodies. Indirect immunofluorescence in C. paradoxa cells showed a marked labeling of the muroplast (aka cyanelle) membrane.  相似文献   

3.
Insulin action is initiated by binding to its cognate receptor, which then triggers multiple cellular responses by activating different signaling pathways. There is evidence that insulin receptor signaling may involve G protein activation in different target cells. We have studied the activation of G proteins in rat hepatoma (HTC) cells. We found that insulin stimulated binding of guanosine 5′-O-(3-thiotriphosphate) (GTP-γ-35S) to plasma membrane proteins of HTC cells, in a dose-dependent manner. This effect was completely blocked by pertussis toxin treatment of the membranes, suggesting the involvement of G proteins of the Gα i/Gα o family. The expression of these Gα proteins was checked by Western blotting. Next, we used blocking antibodies to sort out the specific Gα protein activated by insulin stimulation. Anti-Gα il,2 antibodies completely prevented insulin-stimulated GTP binding, whereas anti-Gα o,i3 did not modify this effect of insulin on GTP binding. Moreover, we found physical association of the insulin receptor with Gα i1,2 by copurification studies. These results further support the involvement of a pertussis toxin-sensitive G protein in insulin receptor signaling and provides some evidence of specific association and activation of Gα i1,2 protein by insulin. These findings suggest that Gα i1,2 proteins might be involved in insulin action. Received 23 September 1998; received after revision 23 November 1998; accepted 25 November 1998  相似文献   

4.
Three-dimensional structure of annexins   总被引:4,自引:0,他引:4  
Annexins constitute a family of structurally related calcium- and phospholipid-binding proteins whose molecular structure has been investigated in detail in the crystalline and membrane-bound form. Their polypeptide chain is folded into four or eight α-helical domains of similar structure with a central hydrophilic pore. Bound to phospholipid membranes, the four-domain arrangement of the annexin molecule is conserved. A peripheral binding mode has been well documented by electron microscopy and a variety of other techniques.  相似文献   

5.
Signal regulation by family conspiracy   总被引:6,自引:0,他引:6  
The signal regulating proteins (SIRPs) are a family of ubiquitously expressed transmembrane glycoproteins composed of two subgroups: SIRPα and SIRPβ, containing more than ten members. SIRPα has been shown to inhibit signalling through a variety of receptors including receptor tyrosine kinases and cytokine receptors. This function involves protein tyrosine kinases and is dependent on immunoreceptor tyrosine-based inhibition motifs which recruit key protein tyrosine phosphatases to the membrane. Negative regulation by SIRPα may also involve its ligand, CD47, in a bi-directional signalling mechanism. The SIRPβ subtype has no cytoplasmic domain but instead associates with at least one other transmembrane protein (DAP-12, or KARAP). DAP-12 possesses immunoreceptor tyrosine-based activation motifs within its cytoplasmic domain that are thought to link SIRPβ to activating machinery. SIRPα and SIRPβ thus have complementary roles in signal regulation and may conspire to tune the response to a stimulus. Received 6 July 2000; revised 2 August 2000; accepted 5 August 2000  相似文献   

6.
Fibroblast adhesion can be modulated by proteins released by neuroendocrine cells and neurons, such as chromogranin A (CgA) and its N-terminal fragment vasostatin-1 (VS-1, CgA1–78). We have investigated the mechanisms of the interaction of VS-1 with fibroblasts and of its pro-adhesive activity and have found that the proadhesive activity of VS-1 relies on its interaction with the fibroblast membrane via a phospholipid-binding amphipathic α-helix located within residues 47–66, as well as on the interaction of the adjacent C-terminal region 67–78, which is structurally similar to ezrin–radixin–moesin-binding phosphoprotein 50 (a membrane-cytoskeleton adapter protein), with other cellular components critical for the regulation of cell cytoskeleton.  相似文献   

7.
The mechanism of the translational thermotolerance provided by the small heat shock proteins (sHsps) αB-crystallin or Hsp27 is unknown. We show here that Hsp27, but not αB-crystallin, increased the pool of mobile stress granule-associated enhanced green fluorescent protein (EGFP)-eukaryotic translation initiation factor (eIF)4E in heat-shocked cells, as determined by fluorescence recovery after photobleaching. Hsp27 also partially prevented the sharp decrease in the pool of mobile cytoplasmic EGFP-eIF4G. sHsps did not prevent the phosphorylation of eIF2α by a heat shock, but promoted dephosphorylation during recovery. Expression of the C-terminal fragment of GADD34, which causes constitutive dephosphorylation of eIF2α, fully compensated for the stimulatory effect of αB-crystallin on protein synthesis in heat-shocked cells, but only partially for that of Hsp27. Our data show that sHsps do not prevent the inhibition of protein synthesis upon heat shock, but restore translation more rapidly by promoting the dephosphorylation of eIF2α and, in the case of Hsp27, the availability of eIF4E and eIF4G. Received 9 December 2005; received after revision 16 January 2006; accepted 23 January 2006  相似文献   

8.
Membrane-embedded β-barrel proteins span the membrane via multiple amphipathic β-strands arranged in a cylindrical shape. These proteins are found in the outer membranes of Gram-negative bacteria, mitochondria and chloroplasts. This situation is thought to reflect the evolutionary origin of mitochondria and chloroplasts from Gram-negative bacterial endosymbionts. β-barrel proteins fulfil a variety of functions; among them are pore-forming proteins that allow the flux of metabolites across the membrane by passive diffusion, active transporters of siderophores, enzymes, structural proteins, and proteins that mediate protein translocation across or insertion into membranes. The biogenesis process of these proteins combines evolutionary conservation of the central elements with some noticeable differences in signals and machineries. This review summarizes our current knowledge of the functions and biogenesis of this special family of proteins.  相似文献   

9.
Mitochondrial association of alpha-synuclein causes oxidative stress   总被引:1,自引:1,他引:0  
α-Synuclein is a neuron-specific protein that contributes to the pathology of Parkinson’s disease via mitochondria-related mechanisms. The present study investigated possible interaction of α-synuclein with mitochondria and consequences of such interaction. Using SHSY cells overexpressing α-synuclein A53T mutant or wild-type, as well as isolated rat brain mitochondria, the present study shows that α-synuclein localizes at the mitochondrial membrane. In both SHSY cells and isolated mitochondria, interaction of α-synuclein with mitochondria causes release of cytochrome c, increase of mitochondrial calcium and nitric oxide, and oxidative modification of mitochondrial components. These findings suggest a pivotal role for mitochondria in oxidative stress and apoptosis induced by α-synuclein. Received 27 December 2007; received after revision 7 February 2008; accepted 8 February 2008  相似文献   

10.
During the 1950s, linear and multichain poly-α-amino acids were synthesized by polymerization of the corresponding N-carboxyamino acid anhydrides in solution in the presence of suitable catalysts. The resulting homo- and heteropolymers have since been widely employed as simple protein models. Under appropriate conditions, poly-α-amino acids, in the solid state and in solution, were found to acquire conformations of an α-helix and of β-parallel and antiparallel pleated sheets, or to exist as random coils. Their use in experimental and theoretical investigations of helix-coil transitions helped to shed new light on the mechanisms involved in protein denaturation. Conformational fluctuations of peptides in solution were analysed theoretically and studied experimentally by nonradiative energy-transfer techniques. Poly-α-amino acids played an important role in the deciphering of the genetic code. In addition, analysis of the antigenicity of poly-α-amino acids led to the elucidation of the factors determining the antigenicity of proteins and peptides. The synthetic procedures developed made possible the preparation of immobilized enzymes which were shown to be of considerable use as heterogeneous biocatalysts in the chemical and pharmaceutical industry. Interest in the biological and physicochemical characteristics of poly-α-amino acids was recently renewed because of the reported novel findings that some copolymers of amino acids are effective as drugs in multiple sclerosis, and that glutamine repeats and reiteration of other amino acids occur in inherited neurodegenerative diseases.  相似文献   

11.
Protein kinase CK2 is an ubiquitously expressed enzyme that is absolutely necessary for the survival of cells. Besides the holoenzyme consisting of the regulatory β-subunit and the catalytic α- or α′-subunit, the subunits exist in separate forms. The subunits bind to a number of other cellular proteins. We show the expression of individual subunits as well as interaction with the transitional nuclear protein TNP1 and with the motor neuron protein KIF5C during spermatogenesis. TNP1 is a newly identified binding partner of the α-subunit of CK2. CK2α and KIF5C were found in late spermatogenesis, whereas CK2β and TNP1 were found in early spermatogenesis. CK2α, CK2α′, TNP1, and KIF5C were detected in the acrosome of spermatozoa, while CK2β was detectable in the mid-piece. Combinations of CK2 subunits might determine interactions with other proteins during spermatogenesis. KIF5C as a kinesin motor neuron protein is probably involved in the redistribution of proteins during spermatogenesis.  相似文献   

12.
Improper protein folding (misfolding) can lead to the formation of disordered (amorphous) or ordered (amyloid fibril) aggregates. The major lens protein, α-crystallin, is a member of the small heat-shock protein (sHsp) family of intracellular molecular chaperone proteins that prevent protein aggregation. Whilst the chaperone activity of sHsps against amorphously aggregating proteins has been well studied, its action against fibril-forming proteins has received less attention despite the presence of sHsps in deposits found in fibril-associated diseases (e.g. Alzheimer’s and Parkinson’s). In this review, the literature on the interaction of αB-crystallin and other sHsps with fibril-forming proteins is summarized. In particular, the ability of sHsps to prevent fibril formation, their mechanisms of action and the possible in vivo consequences of such associations are discussed. Finally, the fibril-forming propensity of the crystallin proteins and its implications for cataract formation are described along with the potential use of fibrillar crystallin proteins as bionanomaterials. Received 13 June 2008; received after revision 29 July 2008; accepted 05 August 2008  相似文献   

13.
The conversion of the cellular prion protein (PrPC) into its disease-associated form (PrPSc) involves a major conformational change and the accumulation of sulfoxidized methionines. Computational and synthetic approaches have shown that this change in the polarity of M206 and M213 impacts the C-terminal domain native α-fold allowing the flexibility required for the structural conversion. To test the effect in the full-length molecule with site-specificity, we have generated M-to-S mutations. Molecular dynamics simulations show that the replacement indeed perturbs the native state. When this mutation is placed at the conserved methionines of HaPrP(23–231), only substitutions at the Helix-3 impair the α-fold, stabilizing a non-native state with perturbed secondary structure, loss of native tertiary contacts, increased surface hydrophobicity, reduced thermal stability and an enhanced tendency to aggregate into protofibrillar polymers. Our work supports that M206 and M213 function as α-fold gatekeepers and suggests that their redox state regulate misfolding routes.  相似文献   

14.
DsbD is a redox-active protein of the inner Escherichia coli membrane possessing an N-terminal (nDsbD) and a C-terminal (cDsbD) periplasmic domain. nDsbD interacts with four different redox proteins involved in the periplasmic disulfide isomerization and in the cytochrome c maturation systems. We review here the studies that led to the structural characterization of all soluble DsbD domains involved and, most importantly, of trapped disulfide intermediate complexes of nDsbD with three of its four redox partners. These results revealed the structural features enabling nDsbD, a ‘redox hub’ with an immunoglobulin-like fold, to interact efficiently with its different thioredoxin-like partners. Received 3 February 2006; received after revision 1 March 2006; accepted 5 April 2006  相似文献   

15.
Long-term potentiation (LTP) defines persistent increases in neurotransmission strength at synapses that are triggered by specific patterns of neuronal activity. LTP, the most widely accepted molecular model for learning, is best characterised at glutamatergic synapses on dendritic spines. In this context, LTP involves increases in dendritic spine size and the insertion of glutamate receptors into the post-synaptic spine membrane, which together boost post-synaptic responsiveness to neurotransmitters. In dendrites, the material required for LTP is sourced from an organelle termed the endosomal-recycling compartment (ERC), which is localised to the base of dendritic spines. When LTP is induced, material derived from the recycling compartment, which contains α-amino-3-hydroxy-5-methyl-4-isoxazole propionate-type glutamate receptors (AMPARs), is mobilised into dendritic spines feeding the increased need for receptors and membrane at the spine neck and head. In this review, we discuss the importance of endosomal-recycling and the role of key proteins which control these processes in the context of LTP.  相似文献   

16.
The finding that mitochondria contain substrates for protein kinases lead to the discovery that protein kinases are located in the mitochondria of certain tissues and species. These include pyruvate dyhydrogenase kinase, branched-chain α-ketoacid dehydrogenase kinase, protein kinase A, protein kinase Cδ, stress-activated kinase and A-Raf as well as unidentified kinases. Recent evidence suggests that mitochondrial protein kinases may be involved in physiological processes such as apoptosis and steroidogenesis. Additionally, the novel finding of low-molecular-weight GTP-binding proteins in mitochondria suggests the possibility that these may interact with mitochondrial protein kinases to regulate the activity of mitochondrial effector proteins. The fact that there are components of cellular regulatory systems in mitochondria indicates the exciting possibility of undiscovered systems regulating mitochondrial physiology. Received 19 June 2001; received after revision 7 August 2001; accepted 8 August 2001  相似文献   

17.
The structure and function of heterotrimeric G protein subunits is known in considerable detail. Upon stimulation of a heptahelical receptor by the appropriate agonists, the cognate G proteins undergo a cycle of activation and deactivation; the α-subunits and the βγ-dimers interact sequentially with several reaction partners (receptor, guanine nucleotides and effectors as well as regulatory proteins) by exposing appropriate binding sites. For most of these domains, low molecular weight ligands have been identified that either activate or inhibit signal transduction. These ligands include short peptides derived from receptors, G protein subunits and effectors, mastoparan and related insect venoms, modified guanine nucleotides, suramin analogues and amphiphilic cations. Because compounds that act on G proteins may be endowed with new forms of selectivity, we propose that G protein subunits may therefore be considered as potential drug targets. Received 18 September 1998; received after revision 6 November 1998; accepted 11 November 1998  相似文献   

18.
Synthetic peptides derived from the C-terminal end of the human complement serine protease C1s were analysed by circular dichroism and nuclear magnetic resonance (NMR) spectroscopy. Circular dichroism indicates that peptides 656-673 and 653-673 are essentially unstructured in water and undergo a coil-to-helix transition in the presence of increasing concentrations of trifluoroethanol. Two-dimensional NMR analyses performed in water/trifluoroethanol solutions provide evidence for the occurrence of a regular α-helix extending from Trp659 to Ser668 (peptide 656-673), and from Tyr656 to Ser668 (peptide 653-673), the C-terminal segment of both peptides remaining unstructured under the conditions used. Based on these and other observations, we propose that the serine protease domain of C1s ends in a 13-residue α-helix (656Tyr-Ser668) followed by a five-residue C-terminal extension. The latter appears to be flexible and is probably locked within C1s through a salt bridge involving Glu672. Received 19 November 1997; accepted 24 November 1997  相似文献   

19.
The application of fractal dimension-based constructs to probe the protein interior dates back to the development of the concept of fractal dimension itself. Numerous approaches have been tried and tested over a course of (almost) 30 years with the aim of elucidating the various facets of symmetry of self-similarity prevalent in the protein interior. In the last 5 years especially, there has been a startling upsurge of research that innovatively stretches the limits of fractal-based studies to present an array of unexpected results on the biophysical properties of protein interior. In this article, we introduce readers to the fundamentals of fractals, reviewing the commonality (and the lack of it) between these approaches before exploring the patterns in the results that they produced. Clustering the approaches in major schools of protein self-similarity studies, we describe the evolution of fractal dimension-based methodologies. The genealogy of approaches (and results) presented here portrays a clear picture of the contemporary state of fractal-based studies in the context of the protein interior. To underline the utility of fractal dimension-based measures further, we have performed a correlation dimension analysis on all of the available non-redundant protein structures, both at the level of an individual protein and at the level of structural domains. In this investigation, we were able to separately quantify the self-similar symmetries in spatial correlation patterns amongst peptide–dipole units, charged amino acids, residues with the π-electron cloud and hydrophobic amino acids. The results revealed that electrostatic environments in the interiors of proteins belonging to ‘α/α toroid’ (all-α class) and ‘PLP-dependent transferase-like’ domains (α/β class) are highly conducive. In contrast, the interiors of ‘zinc finger design’ (‘designed proteins’) and ‘knottins’ (‘small proteins’) were identified as folds with the least conducive electrostatic environments. The fold ‘conotoxins’ (peptides) could be unambiguously identified as one type with the least stability. The same analyses revealed that peptide–dipoles in the α/β class of proteins, in general, are more correlated to each other than are the peptide–dipoles in proteins belonging to the all-α class. Highly favorable electrostatic milieu in the interiors of TIM-barrel, α/β-hydrolase structures could explain their remarkably conserved (evolutionary) stability from a new light. Finally, we point out certain inherent limitations of fractal constructs before attempting to identify the areas and problems where the implementation of fractal dimension-based constructs can be of paramount help to unearth latent information on protein structural properties.  相似文献   

20.
Intracellular trafficking of AMPA receptors in synaptic plasticity   总被引:6,自引:0,他引:6  
Modification of ligand-gated receptor function at the postsynaptic domain is one of the most important mechanisms by which the efficacy of synaptic transmission in the nervous system is regulated. Traditionally, these types of modifications have been thought to be achieved mainly by altering the channel-gating properties or conductance of the receptors. However, recent evidence suggests that AMPA (α-amino-3-hydroxyl-5-methyl-4-isoxayolepropionic acid)-type ligand-gated glutamate receptors are continuously recycling between the plasma membrane and the intracellular compartments via vesicle-mediated plasma membrane insertion and clathrin-dependent endocytosis. Regulation of either receptor insertion or endocytosis results in a rapid change in the number of these receptors expressed on the plasma membrane surface and in the receptor-mediated responses, thereby playing an important role in mediating certain forms of synaptic plasticity. Thus, controlling the number of postsynaptic receptors by regulating the intracellular trafficking and plasma membrane expression of the postsynaptic receptors may be a common and important mechanism of synaptic plasticity in the mammalian central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号