首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
低维囚禁理想玻色气体的玻色—爱因斯坦凝聚   总被引:2,自引:2,他引:0  
应用局域密度近似(LDA)研究低维玻色气体的玻色-爱因斯坦凝聚(BEC),结果表明:对囚禁于外势中的玻色子来说,在低维情况下也有BEC,但其临界温度Tc,基态的粒子占据率No/N,热容量C在临界温度附近的连续性问题都与外势形式紧密相关.  相似文献   

2.
本文一般地讨论了理想玻色气体的空间维度和能谱对玻色-爱因斯坦凝聚的影响,并用玻色爱因斯坦凝聚解释了光子气体的特殊性质,有助于较深刻地理解光子气体的物理内容。  相似文献   

3.
本文详细讨论了玻色—爱因斯坦凝聚现象,指出了态密度对玻色气体凝聚的影响,并从数学和物理上解释了低维玻色气不产生玻—爱凝聚的原因.  相似文献   

4.
目的 应用非广延统计力学中的广义玻色-爱因斯坦分布函数,计算出了广义二维玻色气体的内能、熵、自由能、热容量等热力学量.方法 采用分解近似的方法.结果 /结论将所得的结果与传统的玻色统计的结果进行比较可见,热力学量具有相似的形式,并且在q→1的极限下,所有结果就回到玻色统计的结果.  相似文献   

5.
研究了在任意空间外势场中理想玻色气体的玻色-爱因斯坦凝聚问题,从而计算热容量且讨论了热容量性质.  相似文献   

6.
研究了在幂函数势场中n维气体粒子的态密度公式 ,并讨论了n维理想玻色气体的玻色—爱因斯坦凝聚。  相似文献   

7.
最近人们已经在实验中实现了相互作用玻色气体的玻色-爱因斯坦凝聚,相互作用玻色气体的凝聚温度是玻色-爱因斯坦凝聚问题中一个重要的热力学量,运用鹰势方法和巨正则分布,作者对盒子中相互作用玻色气全的凝聚温度给预了详细考察,研究表明凝聚温度的移动为δTc/Tc=-2.9an^1/3,此处a和n分别为两粒子的S波散射长度和粒子精密度。  相似文献   

8.
研究了d维空间随机箱中玻色气体的凝聚问题,在箱子的线度L满足均匀分布和高斯分布两种情况下,分别求出了系统发生玻色-爱因斯坦凝聚的临界温度Tc,并将Tc与固定箱子中玻色气体发生玻色-爱因斯坦凝聚的临界温度Tc^R作了比较,发现Tc小于或等于Tc^R,其具体的关系取决于L所满足的分布函数.同样研究了被限制在频率随机改变的谐振子势阱中的玻色气体的凝聚问题,发现Tc与Tc^R的关系与上面的结论类似.  相似文献   

9.
阐述玻色-爱因斯坦凝聚的概念,形成的条件,物理性质及其远景。  相似文献   

10.
基于Thomas—Fermi半经曲近似即局域密度近似和平衡态化学势为常数原理,计算了相对论q-玻色气体的热力学量,得到了玻色爱因斯坦凝聚的判据以及热容量跃变的判据,这不同于以往文献的理论结果.  相似文献   

11.
Bloch I  Hansch TW  Esslinger T 《Nature》2000,403(6766):166-170
The experimental realization of Bose-Einstein condensates of dilute gases has allowed investigations of fundamental concepts in quantum mechanics at ultra-low temperatures, such as wave-like behaviour and interference phenomena. The formation of an interference pattern depends fundamentally on the phase coherence of a system; the latter may be quantified by the spatial correlation function. Phase coherence over a long range is the essential factor underlying Bose-Einstein condensation and related macroscopic quantum phenomena, such as superconductivity and superfluidity. Here we report a direct measurement of the phase coherence properties of a weakly interacting Bose gas of rubidium atoms. Effectively, we create a double slit for magnetically trapped atoms using a radio wave field with two frequency components. The correlation function of the system is determined by evaluating the interference pattern of two matter waves originating from the spatially separated 'slit' regions of the trapped gas. Above the critical temperature for Bose-Einstein condensation, the correlation function shows a rapid gaussian decay, as expected for a thermal gas. Below the critical temperature, the correlation function has a different shape: a slow decay towards a plateau is observed, indicating the long-range phase coherence of the condensate fraction.  相似文献   

12.
Towards Bose-Einstein condensation of excitons in potential traps   总被引:5,自引:0,他引:5  
Butov LV  Lai CW  Ivanov AL  Gossard AC  Chemla DS 《Nature》2002,417(6884):47-52
An exciton is an electron-hole bound pair in a semiconductor. In the low-density limit, it is a composite Bose quasi-particle, akin to the hydrogen atom. Just as in dilute atomic gases, reducing the temperature or increasing the exciton density increases the occupation numbers of the low-energy states leading to quantum degeneracy and eventually to Bose-Einstein condensation (BEC). Because the exciton mass is small--even smaller than the free electron mass--exciton BEC should occur at temperatures of about 1 K, many orders of magnitude higher than for atoms. However, it is in practice difficult to reach BEC conditions, as the temperature of excitons can considerably exceed that of the semiconductor lattice. The search for exciton BEC has concentrated on long-lived excitons: the exciton lifetime against electron-hole recombination therefore should exceed the characteristic timescale for the cooling of initially hot photo-generated excitons. Until now, all experiments on atom condensation were performed on atomic gases confined in the potential traps. Inspired by these experiments, and using specially designed semiconductor nanostructures, we have collected quasi-two-dimensional excitons in an in-plane potential trap. Our photoluminescence measurements show that the quasi-two-dimensional excitons indeed condense at the bottom of the traps, giving rise to a statistically degenerate Bose gas.  相似文献   

13.
Bose-Einstein condensation is one of the most fascinating phenomena predicted by quantum mechanics. It involves the formation of a collective quantum state composed of identical particles with integer angular momentum (bosons), if the particle density exceeds a critical value. To achieve Bose-Einstein condensation, one can either decrease the temperature or increase the density of bosons. It has been predicted that a quasi-equilibrium system of bosons could undergo Bose-Einstein condensation even at relatively high temperatures, if the flow rate of energy pumped into the system exceeds a critical value. Here we report the observation of Bose-Einstein condensation in a gas of magnons at room temperature. Magnons are the quanta of magnetic excitations in a magnetically ordered ensemble of magnetic moments. In thermal equilibrium, they can be described by Bose-Einstein statistics with zero chemical potential and a temperature-dependent density. In the experiments presented here, we show that by using a technique of microwave pumping it is possible to excite additional magnons and to create a gas of quasi-equilibrium magnons with a non-zero chemical potential. With increasing pumping intensity, the chemical potential reaches the energy of the lowest magnon state, and a Bose condensate of magnons is formed.  相似文献   

14.
Klaers J  Schmitt J  Vewinger F  Weitz M 《Nature》2010,468(7323):545-548
Bose-Einstein condensation (BEC)-the macroscopic ground-state accumulation of particles with integer spin (bosons) at low temperature and high density-has been observed in several physical systems, including cold atomic gases and solid-state quasiparticles. However, the most omnipresent Bose gas, blackbody radiation (radiation in thermal equilibrium with the cavity walls) does not show this phase transition. In such systems photons have a vanishing chemical potential, meaning that their number is not conserved when the temperature of the photon gas is varied; at low temperatures, photons disappear in the cavity walls instead of occupying the cavity ground state. Theoretical works have considered thermalization processes that conserve photon number (a prerequisite for BEC), involving Compton scattering with a gas of thermal electrons or photon-photon scattering in a nonlinear resonator configuration. Number-conserving thermalization was experimentally observed for a two-dimensional photon gas in a dye-filled optical microcavity, which acts as a 'white-wall' box. Here we report the observation of a Bose-Einstein condensate of photons in this system. The cavity mirrors provide both a confining potential and a non-vanishing effective photon mass, making the system formally equivalent to a two-dimensional gas of trapped, massive bosons. The photons thermalize to the temperature of the dye solution (room temperature) by multiple scattering with the dye molecules. Upon increasing the photon density, we observe the following BEC signatures: the photon energies have a Bose-Einstein distribution with a massively populated ground-state mode on top of a broad thermal wing; the phase transition occurs at the expected photon density and exhibits the predicted dependence on cavity geometry; and the ground-state mode emerges even for a spatially displaced pump spot. The prospects of the observed effects include studies of extremely weakly interacting low-dimensional Bose gases and new coherent ultraviolet sources.  相似文献   

15.
16.
给出了T〉Tc和T〈TC情况下不同能谱的n维简交理想玻色气体的内能及热容量的普遍表达式,应用于三维极端相对论理想玻色气体时则在T-TC处热容量CV出现跃变,这与通常玻色气体的CV在TC处连续的结果不同。  相似文献   

17.
Bose-Einstein condensation of atomic gases   总被引:2,自引:0,他引:2  
Anglin JR  Ketterle W 《Nature》2002,416(6877):211-218
The early experiments on Bose-Einstein condensation in dilute atomic gases accomplished three long-standing goals. First, cooling of neutral atoms into their motional ground state, thus subjecting them to ultimate control, limited only by Heisenberg's uncertainty relation. Second, creation of a coherent sample of atoms, in which all occupy the same quantum state, and the realization of atom lasers - devices that output coherent matter waves. And third, creation of a gaseous quantum fluid, with properties that are different from the quantum liquids helium-3 and helium-4. The field of Bose-Einstein condensation of atomic gases has continued to progress rapidly, driven by the combination of new experimental techniques and theoretical advances. The family of quantum-degenerate gases has grown, and now includes metastable and fermionic atoms. Condensates have become an ultralow-temperature laboratory for atom optics, collisional physics and many-body physics, encompassing phonons, superfluidity, quantized vortices, Josephson junctions and quantum phase transitions.  相似文献   

18.
玻色爱因斯坦凝聚体(BEC)的最初理论在1925年由爱因斯坦和玻色提出,直到1994年才通过激光冷却原子气体的方法在实验室实现,并于2001年获得诺贝尔物理学奖。BEC具有宏观量子特性并且具有较长的相干时间,因此是开展量子模拟研究的重要平台。随着光阱、光晶格、微结构光阱和量子气体显微镜等技术的发展,基于BEC的量子模拟器不仅能够用于研究凝聚态物理中已有的基本模型,而且能够探索自然界中不存在的新奇量子物理现象和量子物态。甚至在非平衡和动力学演化研究方面,BEC量子模拟器可以用来研究当前物理实验中无法观测的快速量子物理现象。  相似文献   

19.
近年来超冷量子气体的研究取得了一系列重大实验突破,其中包括玻色-爱因斯坦凝聚(BEC)的实现、超冷简并费米气的获得以及分子BEC的成功观测等,同时,BEC及简并费米气体相关理论也成为一个热门的研究课题.结合本研究组近期的部分研究工作简要地阐述超冷量子气体的统计性质,主要内容包括量子气体的尺度效应、外势的约束作用、粒子间相互作用的影响、q-形变量子气体的低温特性和非广延统计等.所得结论对进一步深入认识量子气体的低温特性,揭示各种宏观量子效应的实质具有一定的理论价值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号