首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
利用臭氧氧化技术对己烯雌酚(DES)水溶液进行了研究,考察DES溶液初始浓度、溶液初始pH值、臭氧投加量对DES降解的影响.结果表明,在pH3.0~9.0范围内,pH初始值越高,DES降解率越大;在5~20mg/L范围内,DES初始浓度越大,降解效率越高,反应属于一级动力学,动力学方程为-dc/dt=0.08785c;臭氧投加量越大,DES去除率越高;HPLC色谱图表明,在DES臭氧氧化降解过程中,有极性较DES大的产物;氧化过程中溶液的pH值和电导率的变化结果表明,有小分子酸性物质产生.  相似文献   

2.
通过研究臭氧对水中甲基对硫磷的降解.探索臭氧对甲基对硫磷的降解机制和影响因素.将臭氧气体充入反应器中与甲基对硫磷进行反应,采用GC-MS和标准样品对中间产物进行定性分析,并用HIPLC同时监测甲基对硫磷的残留量和中间产物的生成量.结果表明,臭氧对甲基对硫磷的降解由臭氧直接氧化和羟基自由基间接氧化共同完成,降解历程遵循假一级反应动力学.50 mmol/L离子清除剂叔丁醇使甲基对硫磷的降解速率降低60%,而溶液pH值对降解速率则无明显影响.通过GC/MS分析,确定了甲基对氧磷为甲基对硫磷的臭氧降解中间产物.甲基对氧磷的生成量受到溶液pH和甲基对硫磷起始浓度的影响,较低溶液pH和较高甲基对硫磷起始浓度均有利于甲基对氧磷的积累,而离子清除剂则对甲基对氧磷的生成量没有显著影响.  相似文献   

3.
为了探究新型污染物三氯蔗糖(SUC)的有效去除方法,考察了连续臭氧对水中SUC的降解效果,分析了臭氧通量、SUC初始浓度、初始p H值、温度和共存阴离子等因素对降解效果的影响,并通过产物鉴定推测了SUC的降解路径.结果表明:臭氧氧化工艺能高效去除SUC,中性条件下羟基自由基(HO·)间接氧化作用大于臭氧直接氧化.SUC降解过程均符合拟一级动力学反应方程特征,反应速率常数均随臭氧通量、p H值和温度的升高而增大;SUC的初始浓度高将降低降解效果,水中常见阴离子抑制SUC降解的顺序为CO_3~(2-)HCO_3~-Br~-Cl~-.利用幂指数型经验模型得到了臭氧降解SUC的动力学模型,臭氧氧化过程经LC/MS鉴定有4种中间产物,降解路径可能为糖苷键的断裂和HO·的取代反应.  相似文献   

4.
为考察生化法代替部分臭氧氧化的可能,研究了苊这种分子中含有饱和C-C键的典型性多环芳烃的臭氧氧化过程。使用液相色谱和紫外光谱观察了氧化过程和中间产物的变化,测定了中间产物水溶液的总有机碳浓度(TOC)和中间产物对活性污泥氧吸收速率(OUR)的影响。结果表明,苊被臭氧降解的同时将有中间产物生成;臭氧可以与中间产物继续反应,但过量的臭氧未实现对有机物的矿化;臭氧氧化改善了苊的可生化性。臭氧不完全氧化结合生物降解,有望成为兼顾经济性与效率的处理废水中苊的方法。  相似文献   

5.
为了研究微气泡臭氧氧化技术处理废水的影响因素,采用微气泡臭氧氧化技术处理酸性大红3R废水,考察臭氧投加量、酸性大红3R废水初始浓度和投加活性炭对微气泡臭氧氧化过程中脱色率、TOC去除率、pH值以及臭氧利用率的影响。结果表明,提高臭氧投加量或降低酸性大红3R废水的初始浓度,酸性大红3R废水的脱色速率和TOC去除速率均有所上升,但臭氧利用率下降。煤质活性炭对微气泡臭氧氧化具有较强的催化活性,能够显著提高酸性大红3R废水的脱色速率和TOC去除速率。臭氧投加量为48.3 mg/min、酸性大红3R废水的初始质量浓度为100mg/L时,处理效果较好。此条件下,处理30min时脱色率达到100%,处理120min时TOC去除率达到78.0%,TOC去除表观反应速率常数为0.015min~(-1),臭氧利用率始终高于99%。而投加5g/L煤质活性炭后,处理15 min后脱色率达到100%,处理120 min时TOC去除率可达到91.2%,TOC去除表观反应速率常数提高至0.037min~(-1)。处理过程中出现中间产物小分子有机酸的积累并继续氧化降解,使得废水的pH值呈现先下降后升高的趋势。可见,对微气泡臭氧氧化影响因素进行优化,可提高污染物去除速率及臭氧利用率,显著改善处理性能。  相似文献   

6.
采用水热法合成铈掺杂MCM-41(Ce-MCM-41)介孔分子筛,并将其用于臭氧氧化水中腐殖酸.本文研究了催化剂投加量、铈掺杂量、反应温度和初始pH对腐殖酸降解及矿化的影响. 结果表明,腐殖酸在Ce-MCM-41/O3体系内可实现有效降解. 与单独臭氧氧化相比,Ce-MCM-41催化剂的加入可提高臭氧氧化腐殖酸的矿化效果. 催化剂投加量为100 mg/L时,催化剂具有较好的催化活性,反应60min,DOC去除率为70.58%(Si/Ce=80);三种铈掺杂量催化剂的添加均能提高腐殖酸矿化效果. 在278 ~308 K实验范围内,腐殖酸溶液的DOC去除率和UV254去除率均随反应温度升高而提高.溶液初始pH为6.0~8.5时,DOC去除率随碱性增强而略微下降. 表明温度和溶液初始pH影响催化臭氧氧化去除腐殖酸的效果. 此外,还考察了添加Ce-MCM-41对含溴水臭氧氧化过程中溴酸盐生成的影响,与单独臭氧相比,1.00 g Ce-MCM-41分子筛的加入减少了46.94%溴酸盐生成. 结果表明添加Ce-MCM-41分子筛可抑制溴酸盐的生成. 因此Ce-MCM-41分子筛可用于提高臭氧氧化腐殖酸效果和减少含溴水臭氧氧化过程中溴酸盐的生成.  相似文献   

7.
多相催化氧化降解苯酚过程的研究   总被引:1,自引:0,他引:1  
利用紫外可见光谱和高效液相色谱研究了催化氧化降解苯酚的过程.结果表明,非晶铁氧化物催化剂在催化氧化降解苯酚时具有较高的催化活性,苯酚降解的中间产物有:对苯二酚、邻苯二酚、苯醌和低级脂肪酸,其降解机理是羟基自由基攻击苯环上OH的邻位或对位而使苯环开环,生成低级脂肪酸,并最终转化成二氧化碳和水,从而使苯酚得以降解.  相似文献   

8.
为深入了解接触辉光放电等离子体降解水中有机污染物的机理,用高效液相色谱法检测了4-氯苯酚的降解中间产物,用光度法检测了溶液中生成的过氧化氢.结果表明:在4-氯苯酚降解的同时溶液中有大量过氧化氢产生,4-氯苯酚的降解速率和过氧化氢的生成速率随着电流的升高而加快;4-氯苯酚的去除率和过氧化氢的生成速率随着4-氯苯酚初始质量浓度的升高而降低,但4-氯苯酚的绝对去除量随着4-氯苯酚初始质量浓度的升高而增加.铁盐对4-氯苯酚的去除有明显的催化作用,铁离子的催化效果优于亚铁离子.无催化剂时4-氯苯酚的降解中间产物主要为羟基化苯酚;在铁盐存在下主要的中间产物为对4-氯儿茶酚、对苯醌和对苯二酚.  相似文献   

9.
从反应动力学及影响因素角度系统地探讨臭氧对糖精(SAC)的降解效果.结果表明:SAC的臭氧氧化降解反应符合拟一级动力学模型,温度为20℃,pH为7,SAC初始质量浓度为20 mg/L,臭氧投加量为7.9 mg/L条件下,60 min后SAC完全降解,总有机碳(TOC)去除率为82.34%.臭氧投加量增加有利于SAC的降解,但臭氧的利用效率降低;SAC初始质量浓度越高,反应速率越慢,但降解效果受臭氧投加量的限制;pH值由酸性升高至微碱性,反应速率大幅上升;反应温度由10℃升至30℃,降解速率提高164%;水中常见阴离子对SAC降解有一定抑制作用,其中HCO_3~-的抑制作用最明显,随后是Cl-和SO_4~(2-),且随着HCO_3~-浓度的增加而增加.SAC的臭氧氧化降解遵循·OH氧化的机理.  相似文献   

10.
硫酸铁改性活性炭催化微波照射快速降解亚甲基蓝的研究   总被引:1,自引:0,他引:1  
在硫酸铁改性活性炭存在下,微渡照射能使溶液中的亚甲基蓝迅速降解。对总体积25mL,浓度100mg/L的亚甲基蓝溶液,改性活性炭加入量0.4g/L,微波照射3.0min时亚甲基蓝的降解率可达69.31%。适当提高改性活性炭加入量,如1.0g/L时,同样照射条件下溶液中的亚甲基蓝降解率即可达100%。结果表明,改性活性炭作为微波降解亚甲基蓝的催化剂具有降解速率快,成本低,没有中间产物生成和不会造成二次污染等优点,适合于大规模治理染料废水。另外,采用紫外一可见光谱和离子色谱技术探讨了微波照射时问、亚甲基蓝初始浓度、改性活性炭用量、改性液硫酸铁浓度和酸度以及溶液酸度对亚甲基蓝降解率的影响。  相似文献   

11.
利用接触辉光放电反应器产生等离子体降解直接蓝86(DB)水溶液,考察了DB初始浓度、初始pH和Fe^2+对DB降解率的影响.结果表明,当DB初始浓度为30.0mg/L,溶液pH为3.0时,放电90min DB降解率可达72.36%;加入10.0mg/LFe^2+时,放电10min DB降解率可达69.20%.DB降解过程中,随反应时间的延长,溶液pH值逐渐降低,溶液电导率逐渐上升.降解90min后COD去除率为41.76%,加入10.0mg/LFe^2+后10minCOD去除率达38.50%,表明Fe^2+对DB降解有明显的催化作用.  相似文献   

12.
以模拟染料废水甲基橙(MO)溶液为目标物,研究了Fe2+、Fe3+均相催化臭氧氧化及负载型铁氧化物非均相催化臭氧氧化对MO的去除特性,并探讨了在非均相催化剂活性炭负载Fe2O3(Fe2O3/AC)、活性氧化铝负载Fe2O3(Fe2O3/Al2O3)催化臭氧氧化体系中pH值、催化剂投加浓度、臭氧浓度、MO初始浓度等工艺参数的作用规律.结果表明,Fe2+、Fe3+、Fe2O3/AC、Fe2O3/Al2O3的加入均能提高MO的脱色率和COD去除率,且Fe2O3/AC、Fe2O3/Al2O3的催化效果更为显著;当Fe2O3/AC、Fe2O3/Al2O3的投加浓度为1.0 g/L,臭氧浓度为15.0 mg/L,MO初始浓度为25.0 mg/L、pH值为5.0时,30 min时Fe2O3/AC、Fe2O3/Al2O3催化臭氧体系降解MO的脱色率和COD去除率分别为89.26%、48.45%和80.34%、38.41%.  相似文献   

13.
采用水热法合成铁、锰双金属掺杂MCM-41(Fe-Mn-MCM-41),并将其用于控制催化臭氧氧化含溴水体中溴酸盐,研究了初始pH、叔丁醇(TBA)、磷酸盐等对溴酸盐抑制效果的影响. 结果表明,当溶液初始pH为5.0~9.0时,溴酸盐生成量随pH值升高而增加, pH = 5.0时催化剂对溴酸盐的抑制率达到85.9%.叔丁醇(TBA)的加入使单独臭氧氧化与催化臭氧氧化中溴酸盐生成量明显降低,当加入0.1 mM TBA后,溴酸盐分别减少67.7%和81.1%. 磷酸盐的加入(1、5、10 mg/L)会降低溴酸盐生成量,当加入1 mg/L磷酸盐时,单独臭氧氧化与催化臭氧氧化两种体系中,溴酸盐抑制率分别达到29.6%和82.5%. 此外,还研究了体系中生成的HOBr与H2O2浓度,结果表明,单独臭氧氧化中次溴酸浓度高于催化臭氧氧化过程,说明催化臭氧氧化过程是通过阻止Br-氧化生成HOBr/OBr-抑制溴酸盐生成; Fe-Mn-MCM-41/O3中的H2O2浓度高于O3过程,而H2O2是一种溴酸盐抑制物,证明了催化剂的加入可以提高对溴酸盐的抑制率. 因此,Fe-Mn-MCM-41是一种可用于控制含溴水体中溴酸盐生成的臭氧氧化催化剂.  相似文献   

14.
摘要:为了研究超声波对水溶液中盐酸四环素(TC•HCl)的降解作用,探讨了超声频率、功率、溶液初始浓度、pH值以及阴离子对其降解效果的影响。结果表明:超声技术可快速有效地降解水中TC•HCl。当pH为5.5左右、频率400 kHz、功率100W时,超声辐照20min后,1mg/L TC•HCl的去除率可达到88.17%。超声对TC•HCl的降解符合拟一级动力学模型。在试验所研究的范围内,TC•HCl的降解速率随超声功率的增大而提高,随初始浓度的增大而降低,并且存在一个最优的降解频率400 kHz。溶液pH值对降解效果影响很大,碱性条件更利于TC•HCl的降解。Cl-和SO42- 对TC•HCl降解略有抑制。NO3-离子对TC•HCl降解略有促进,而HCO3-、HPO42-促进作用显著。  相似文献   

15.
以碳纳米管、聚氨酯发泡剂为主要原料制备出一种新型高效吸附剂,研究了其对天然水中腐植酸的吸附特性.试验中考察了腐植酸溶液pH值与初始浓度、吸附剂用量与吸附时间对吸附过程与效果的影响.试验发现,碳纳米管泡沫体对腐植酸吸附平衡时间约为5 h;在酸性(pH为3.5)及偏酸性条件下(pH为5.5),1%CNT泡沫体对腐植酸吸附率高;在腐植酸初始浓度低于20 mg/L与在20~40 mg/L时,其吸附率分别为100%和大于80%.研究结果表明,碳纳米管泡沫体是一种新型高效的吸附剂,在酸性与偏酸性条件下对天然水中腐植酸有很好的吸附效果,碳纳米管泡沫体吸附腐植酸符合Langmuir模型.  相似文献   

16.
本文运用高压脉冲放电等离子体技术研究对BPA溶液的降解效果,搭建反应器并研究了电场参数对降解去除率的影响,并使用最优电场参数结合环境因子变量研究去除效果。结果表明:电压高于30 kV、极间距1.5~2.5 cm有利于提高电场强度提高BPA去除效率;而提高放电频率可增加单位时长内的电场强度从而在反应前期BPA降解速率更高。溶液中BPA初始浓度和电解质的增加并不影响反应的进行;BPA放电降解较优的pH范围在7.0~9.0,而溶液初始pH值较低和较高时都将降低反应速率。可见在适当的理化条件下,高压脉冲放电对BPA有较好的去除效果。  相似文献   

17.
通过高温高压方法合成出稀土元素Sm填充n型方钴矿化合物SmxCo4Sb12(0〈x〈1),并考察了在室温下Sm填充率对热电性能的影响规律.结果表明:SmxCo4Sb12化合物表现为n型传导;电阻率和Seebeck系数随着合成压力的增加逐渐增加;晶格热导率随着Sm填充分数的增加而降低,在Sm填充量为0.5时达到最小值.室...  相似文献   

18.
通过尿素水热共沉淀法制备了一种锌镁铝类水滑石(LDHs),将其煅烧制得焙烧态锌镁铝类水滑石(LDOs),使用鼓泡搅拌反应器,以吡啶降解率和出水化学需氧量(COD)为评价指标研究了LDOs在臭氧氧化降解吡啶中的催化潜力,并分析了其催化臭氧氧化动力学。结果表明,与单独臭氧氧化相比,LDOs催化臭氧氧化可显著提升对吡啶的降解效果。对于初始质量浓度为300 mg/L的吡啶废水,在反应时间为40 min、催化剂用量为0.6 g/L和初始pH为10的条件下,吡啶降解率和出水COD可分别达到96.9%和71.7 mg/L,并且初始吡啶的质量浓度越低,降解速率越快。此外,LDOs还表现出优异的催化稳定性。单独臭氧和催化臭氧氧化降解吡啶的过程都近似符合伪二级反应动力学模型,同时结果表明·OH是LDOs催化臭氧氧化降解吡啶的主要自由基。吡啶的主要降解产物可能为N-甲基乙酰胺或N,N-二甲基甲酰胺有机物以及硝酸根离子、二氧化碳和水等小分子无机化合物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号