首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
高山草甸区域内道路冻胀、翻浆等病害大量发生,水分迁移是产生冻胀翻浆病害的主要原因.为了研究初始含水率、细颗粒含量及入流通量对非冻结路基土中水分迁移的影响.依托拉妥至芒康公路改建工程,进行室内试验.结果表明:当土体处于最佳含水率时,不同细颗粒含量的土样毛细水上升高度不同;在一定细颗粒含量范围内,土体总入流量及入流通量随细颗粒含量的增加而增大;当初始含水率为11%时,细颗粒含量为19%的土样总入流量随时间变化曲线表现为"S"形,而细颗粒含量为22%的土样却表现为拱形,说明土样总入流量随时间变化曲线随着细颗粒含量的增加,土样同样出现滞后现象.土体总入流量及入流通量与初始含水率成反比,总入流量随时间变化曲线由拱形变化为"S"形.结果表明高山草甸区的最低路基填筑高度控制在1.5 m以上,能有效防治路基冻胀翻浆.研究成果可对西藏高山草甸区公路建设与养护提供科学的依据和指导意义.  相似文献   

2.
朱杰  王蒙 《科学技术与工程》2020,20(14):5757-5763
采用自行研制的冻胀融沉试验系统,对淮南弱膨胀土进行不同含水率、冷端温度等条件下的室内冻胀和融沉试验。结果表明:土体冻胀率随含水率、冷端温度和干密度的升高而增大;而随着含盐率的增加,冻胀率呈现减小的趋势,冻胀率与时间关系的可用指数函数y=a(1-e~(-bt))描述。通过温度和水分变化规律可知,距离冷端越远,温度下降速率越慢,达到稳定状态的时间越长。土体冻结深度随温度降低而增加,且与温度场发展规律一致。由于冻结过程中的水分迁移,使冻结区的含水率普遍大于初始含水率,而未冻区含水率则小于初始含水率,在冻结缘附近含水率达到最大,水分在此处集聚形成分凝冰夹层。另外,融沉试验的结果说明了土体融沉量会随含水率升高和温度降低而增大,由各级荷载下的融沉量确定融沉系数和体积压缩系数,为冻土沉降计算提供参数。  相似文献   

3.
以江苏镇江、扬州等地区具有代表性的表层黏土为研究对象,对土体进行了单向冻结实验,研究了不同饱和度、不同温度梯度、不同冻结速率及不同补水条件下土体中水分迁移的现象.实验结果表明:在有外界水源补给的条件下,土体冻结时间越长,非饱和土中水分迁移现象范围越大,对于饱和土每层含水率基本波动范围不大;温度梯度越大,土体完全冻结且水分迁移达到稳定状态所需时间越短,水分迁移的范围越广;在无水源补给的条件下,冻结速率越大,土试样中水分迁移分布曲线变得越平缓;相对于无外界水源补给条件下,有外界水源补给的试样最终完全冻结时水通量更大,土样中水分迁移分布的范围更明显.  相似文献   

4.
为探讨不同温控模式、干密度、含水率对水分迁移与冻结过程影响,以哈尔滨某灌区低液限黏土为研究对象,使用常规冻胀监测试验仪器,进行冻结作用下该黏土水分迁移和冻胀过程试验.试验结果表明:在相同冻结指数条件下,不同温控模式的土样温度场冻结锋面位置、温度梯度发展等差异性显著; a1(规范模式控温)水分迁移量大于a2(冻结指数等效模式控温),水分迁移量大小与冻结锋面发展快慢有较强响应关系;在相同温控模式下,土样干密度、含水率对土层含水量变化趋势影响较小,其趋势受温控影响较大,且土样极值含水率产生位置受温控模式影响;在相同土样干密度和含水率下,a1温控模式产生土样冻胀变形大于a2温控模式,冻胀、冻缩现象更加显著.  相似文献   

5.
黄土地区高填方工程改变地下原有给排水体系,土体长期处于干湿循环状态引发系列工程病害。为了阐明不同干湿条件下重塑黄土水分迁移规律,在干湿环境下对初始干密度和含水率不同的土样进行了水分迁移试验,结果表明:土体在干湿环境下,水分迁移导致含水率变化呈径向分区分布,上部土体含水率略低于下部;减湿过程,水分不断迁移,随迁移高度的增加,含水率分布逐渐稳定;干湿次数增多,土体持水能力弱化,水分上移速度减慢,湿润峰爬升的最大高度降低;土体初始干密度越小,湿润峰推进速度越快;初始含水率越大,水分迁移速率越快,但稳定后,土体最终含水率差异不大,并且随着距底板高度的增加呈下降趋势;干湿环境下水分迁移也受水分重分布及土颗粒结构重组等多方面的影响,初始含水率和干湿循环次数不同,主导因素也不同,土体水分迁移规律呈现出相应的多样化特征。  相似文献   

6.
为了探究黏质粉土冻胀过程中水分重分布和密度变化规律,通过4个不同顶板温度条件下黏质粉土的单向冻结试验,采用切层法和计算机断层扫描(CT)对试样冻结前后的分层含水率数据和分层密度数据进行了分析。结果表明:试样冻胀是由水分迁移和初始土样中的水分重分布后在已冻区和冻结缘区域发生相变后体积膨胀所控制的;试样冻胀后已冻区密度减小,未冻区密度增大,与含水率的变化规律相反。整体试样的宏观冻胀包含了已冻区的冻胀作用和未冻区的固结作用。  相似文献   

7.
锅盖效应是指土中的水汽迁移被覆盖层所阻挡,水汽在冷凝或凝华作用下在覆盖层下聚集的现象.为了研究寒区路基土的锅盖效应气态水迁移规律并分析其作用机理,利用自行研制的锅盖效应试验设备,采用取自北京大兴国际机场的粉质黏土试样进行了一系列试验,研究了温差、初始含水率和试验时间对于锅盖效应的影响.试验结果表明:土样上下边界存在温差时,水汽会向低温区迁移,使土样上部含水率增加,温差越大,土样上部水分增加量越大,且水汽越容易补充进土样;土样顶部为正温时,含水率只在覆盖层下出现最大值,土样顶部为负温时,含水率不仅在覆盖层下出现最大值,而且在冻结锋面处也会出现峰值;初始含水率较低时,土体中的水分迁移以气态水迁移为主,较高时以液态水迁移为主,初始含水率适中时,以混合态水迁移为主,气态水迁移时,试样能够从水源吸收水汽使土样总水量增加;进行了试验时间为30 d的冻结条件下的气态水迁移试验,发现试验过程中水汽不断补充进土样,土样上部水量和总水量均持续增加,试验结束后覆盖层下产生了凝华冰层,含水率接近饱和.试验结果说明锅盖效应可以造成寒区实际路基土的含水率大幅提高,使之存在工程病害隐患.  相似文献   

8.
为探究盐渍土地基冻融过程中的水盐迁移规律,以内蒙古东部典型盐渍土为研究对象,通过改变土样冷端温度,初始含水率,干密度和含盐量等因素,进行室内重塑土单向冻结,双向融化试验。结果表明:试样温度的改变存在滞后性,离冷端越近,温度变化越敏感;在冻结过程中,土样初始含水率、干密度或者含盐量的增大,将造成冻结锋面的移动速度减小。试件水分迁移量随着初始含水率的增大而增大;当初始含水率较低时,冷端温度的变化对水分迁移影响较小,只有当初始含水率足够大时,迁移量才随着冷端温度的降低而增大;土溶液冻结和电导率突变存在关联性;含盐量的增加,会抑制水分迁移。试件整体盐分迁移量随着冷端温度的降低而增大;只有当冷端温度足够低时,盐分迁移量才会随着初始含水率的增大而增大;增大干密度会减少盐分迁移;含盐量的增多,使盐分往试件暖端方向汇聚。  相似文献   

9.
为探究盐渍土地基冻融过程中的水盐迁移规律,以内蒙古东部典型盐渍土为研究对象,通过改变土样冷端温度,初始含水率,干密度和含盐量等因素,进行室内重塑土单向冻结、双向融化试验。结果表明:试样温度的改变存在滞后性;离冷端越近,温度变化越敏感;在冻结过程中,土样初始含水率、干密度或者含盐量的增大,将造成冻结锋面的移动速度减小。试件水分迁移量随着初始含水率的增大而增大;当初始含水率较低时,冷端温度的变化对水分迁移影响较小;只有当初始含水率足够大时,迁移量才随着冷端温度的降低而增大;土溶液冻结和电导率突变存在关联性;含盐量的增加,会抑制水分迁移。试件整体盐分迁移量随着冷端温度的降低而增大;只有当冷端温度足够低时,盐分迁移量才会随着初始含水率的增大而增大;增大干密度会减少盐分迁移;含盐量的增多,使盐分往试件暖端方向汇聚。  相似文献   

10.
冻结过程路基土体水分迁移特征分析   总被引:3,自引:0,他引:3  
以沈哈高速铁路沿线的粘质黄土为研究对象,进行了冻结过程中封闭系统下土体水分迁移试验,试验结果表明:试样中温度的变化是先快后慢,最终试样内部温度随深度的变化呈现出一个稳定的温度梯度分布;温度势对水分迁移的影响甚微,温度梯度是导致含水量梯度产生的一个重要诱导因素,当温度的变化致使土体发生冻结时,冻结区的液态水含量急剧减小,从而引起其基质势能的急剧降低,促使土中未冻水沿着温度降低的方向迁移.基于上述试验,通过建立二维温度场与水分场耦合效应模型,应用有限元数值方法对室内封闭系统下模型试件的温度场、水分场进行了数值模拟,计算值与实测值基本吻合,验证了水热耦合数值计算模型的正确性.该模型可用于模拟季节性冰冻地区路基土体中水分迁移的变化规律,为冻胀防治提供依据.  相似文献   

11.
为研究哈尔滨黏土在低温条件下冻土中未冻水含量特性,通过差式扫描量热法(differential scanning calorimetry, DSC)研究了不同初始含水量的哈尔滨本地黏土、高岭土和蒙脱土在冻结过程中的未冻水含量变化,并结合微观角度的扫描电子显微镜(scanning electron microscope, SEM)实验、中观角度的液塑限实验对不同黏土颗粒土质以及哈尔滨黏土粒度进行实验研究。结果表明,温度因素对于未冻水含量变化的影响最为显著,可将未冻水含量的变化过程依据节点温度分为3个典型阶段,分别为恒定不变段、剧烈下降段和缓慢降低段。初始含水量主要影响冻结过程第二阶段,初始含水量越高,第二阶段冻结的水量越多。土质不同,其未冻水变化曲线不同。粒度分布主要影响冻结过程的第三阶段,粒径越小,等效微小孔隙越多,第三阶段未冻水含量变化相对更剧烈。可见哈尔滨黏土的冻结过程中的未冻水含量特性除了与初始含水量和温度有着密切联系,同时也受到土体的土质、粒度的影响。  相似文献   

12.
为研究正冻土水热变化特征及它们之间联系,对非饱和黏土进行单向冻结模型实验,结果表明:土在冻结温度附近降温速率最小,持续时间较长;靠近表面土降温快,较其下部土提前进入冻结,且冻结历时短;靠近顶面的测点温度曲线重合度不如其下层,可能因为受外界次要因素干扰时深层土壤受影响小;正冻土温度分布大致分为两段,冻结区线段斜率大于未冻区,随冻结时间增加,非冻结险段线段斜率会先增大后减小,最终两段线变为一段线,此时温度沿土柱高度线形分布;未冻水含量变化拐点大致在冻结锋面处,距冻结锋面越近,吸力越大,水分迁移量越大,随冻结时间的增加,非冻结区水分迁移速度变大;未冻区土水势梯度最小,正冻区及冻结区土水势梯度大小关系并不明确;未冻水含量变化与温度变化一致,未冻水含量变化分为三个阶段:缓慢下降阶段、快速下降阶段、指数下降阶段。  相似文献   

13.
冻胀融沉现象是高山草甸区路基的主要病害,是急需解决的重要问题。对于季冻区路基,蠕变作用使得路基冻胀变形更加复杂,因此,建立一种考虑蠕变损伤作用的冻土数学模型尤为重要。将冻土视为非线性弹性体,考虑冻土体蠕变损伤作用,分别从水分场、温度场、应力场角度,基于各物理场的微分控制方程式及其之间的联系方程,建立冻土在三场耦合下的数学模型。基于该数学模型对高山草甸区路基进行数值计算。研究发现,路基的最大冻深位置在路基表面以下1.2 m处,冻结锋面推移最大深度达到距离路基顶端以下0.6 m处;在左右路基顶角、新旧路基填土交界处及坡脚拐点处易出现应力集中;最大水平位移约为6.44 mm,最大竖向位移约为15.8 mm,大致出现在两侧坡面与路基顶面交界角处,应重点加强两侧坡面及路基顶面交界角处的防冻胀处置措施。  相似文献   

14.
王双林  郭颖  单炜  钱坤 《科学技术与工程》2020,20(12):4818-4825
通过差式扫描量热法(differential scanning calorimetry,DSC)试验,研究不同初始含水率下黏土在冻融过程中未冻水含量与温度的关系,将融化和冻结过程中冻土未冻水含量的特征点作为参数,建立黏土未冻水含量与温度关系半经验模型,并分析初始含水率对参数的影响。结果表明:模型计算值与试验值吻合较好;初始含水率对黏土冻结时的过冷温度影响较小;完全融化温度随初始含水率增大略有上升;不同初始含水率的相同土质的未冻水含量在同一温度点的变化较小。  相似文献   

15.
为研究采用联合工法施工,能够有效控制土体冻胀位移的施工参数,本文以广州地铁十四号线某联络通道冻结工程为背景,通过有限元软件建立联络通道冻胀位移场三维数值模型,研究了盐水温度和水泥掺量对土体冻胀位移的影响,并计算不同冻结壁厚度下地表冻胀位移量以及联络通道开挖土体的塑性区域,在满足施工安全的前提下,进一步对冻结壁设计参数进行优化,以减小土体冻胀位移。结果表明:采用水泥预加固-人工冻结联合工法施工,当水泥掺量设定为12%,盐水温度控制在-25℃~-31 ℃时,积极冻结末期,地表冻胀位移能够满足工程监测要求;水泥掺量设定为12%,冻结壁厚度设定在1.8m,盐水温度控制在-31 ℃。可见相对于原施工方案,采用联合工法施工,积极冻结末期地表冻胀量减小了73%。  相似文献   

16.
为研究季冻区高速铁路路基冻融病害及其变形特征,以兰新高速铁路K1934+190无砟轨道路基断面作为研究对象,在已有的水分迁移控制微分方程、瞬态温度场控制微分方程及土体单元应力-应变方程的基础之上,建立了无砟轨道路基受水分、温度及应力影响的数学计算模型,通过模拟和现场监测对比分析了自2019年10月初至2020年5月初路基的动态变化规律。结果表明,由于水分场、温度场对季冻区高速铁路路基的耦合作用,致使路基水分变化、温度变化及由此产生的温度场重分布、水分场重分布是导致路基发生冻胀融沉的关键因素,其变形在时间域上呈规律性变化,这一结论可为研究冻土地区高速铁路路基冻害治理提供参考。  相似文献   

17.
寒区非饱和土体混合态水分迁移研究进展   总被引:1,自引:0,他引:1  
综合分析了冻土液态水和气态水迁移机制以及水热耦合数值模型,归纳了土水势理论和水汽迁移成冰理论的研究进展,综述了冻土传统水分迁移驱动力理论和水汽迁移驱动力理论,分析了工程地基土体增水机理,对水热力和水热汽耦合作用理论进行了总结分析,并对比了不同数值模型的特点。因冻土冰水相压力的不明确,Clapeyron方程在冻土中的适用性还需进一步探究;水汽遇冷冷凝作用和水汽蒸发凝结作用很好地解释了非饱和土体的增水机理;传统水分迁移理论多是基于液态水展开研究,忽略了水汽运移的影响,水汽迁移成冰理论很好地解释了水汽运移引起的工程冻害;水热力耦合迁移理论没有充分表征应力场的作用,不能完全揭示土体冻胀的形成和发展过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号