首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 359 毫秒
1.
为实现废旧水泥稳定基层材料的高效再生利用,在确定乳化沥青冷再生水泥稳定材料最佳配合比的基础上,研究了不同水泥掺量对乳化沥青冷再生水泥稳定材料力学及路用性能的影响规律,从而比选确定最佳水泥掺量,最后利用扫描电子显微镜观察了乳化沥青冷再生水泥稳定材料的微观形貌,对其强度形成机理进行了分析。结果表明:本文中最佳水泥掺量为1.5%,对应的最佳乳化沥青掺量为4.5%,最佳含水率为5.69%,此时劈裂强度为0.6 MPa,抗压强度为3.58 MPa,抗压回弹模量约为1032 MPa,劈裂强度为0.51 MPa。在添加水泥以后,水泥的水化产物与乳化沥青结合形成网状结构加强了集料之间的粘结强度,进一步提升了冷再生混合料的抗压强度、劈裂强度和高、低温性能。  相似文献   

2.
砖粉碎料的含量影响水泥稳定再生集料的力学性能.本文采用试验研究了水泥含量、砖粉碎料掺量和养护龄期对水泥稳定再生集料力学性能的影响,建立了这3种因素与无侧限抗压强度、劈裂强度、抗压回弹模量和抗冻性能的关系.试验结果表明,随着砖粉碎料掺量的减少,水泥稳定再生集料的最大干密度增大,其最佳含水量减小;随着水泥含量的减少,水泥稳定再生集料的最大干密度减小,其最佳含水量基本不变;不同龄期水泥稳定再生集料的无侧限抗压强度、劈裂强度、抗压回弹模量和抗冻性能都随着砖粉碎料掺量的增加而降低,随着水泥含量的增加而增加;以水泥含量和砖粉碎料掺量为变量建立了含砖粉碎料水泥稳定再生集料的无侧限抗压强度、劈裂强度和抗压回弹模量计算公式.  相似文献   

3.
龚会兰 《科技信息》2009,(5):305-305,308
利用水泥处治废旧沥青混合料属于沥青路面冷再生的范畴,本文设计了一系列室内试验,分剐对原材料和再生混合料的物理力学特性进行了研究,对再生混合料的无侧限抗压强度、抗压回弹模量和劈裂强度等主要力学指标进行了实验研究。  相似文献   

4.
通过室内试验对不同RAP含量下的乳化沥青冷拌再生混合料的抗压强度、劈裂强度和抗压回弹模量等力学性能进行研究,结果表明再生混合料的抗压强度、劈裂强度和抗压回弹模量均随RAP用量的增加呈线性减小趋势。  相似文献   

5.
乳化沥青冷再生混合料配合比设计及性能分析   总被引:1,自引:0,他引:1  
为了提出乳化沥青冷再生混合料的配合比,以九景(九江—景德镇)高速公路改建项目为例,通过室内试验,研究了水泥含量、乳化沥青含量对混合料劈裂强度、马歇尔稳定度的影响,确定了最佳配合比,并分析了乳化沥青冷再生混合料的力学和路用性能。结果表明:乳化沥青冷再生混合料的抗压回弹模量均大于1 000 MPa,增加压实功可提高其水稳定性,击实75次时的劈裂强度比可达到78.5%,动稳定度可达到2400次/mm,低温应变大于2 000με。此外,为乳化沥青冷再生混合料提出了室内试验指标的参考标准。  相似文献   

6.
为了深入分析建筑拆除废弃物应用于公路工程中的可行性,通过室内试验揭示了龄期、新集料掺量等因素对建筑拆除废弃物水泥稳定碎石(CCWM)无侧限抗压强度、劈裂强度和抗压回弹模量等力学参数的影响规律,建立了各力学参数的预估模型,提出了CCWM各力学参数的推荐参考值.结果表明:CCWM无侧限抗压强度、劈裂强度和抗压回弹模量随着龄期和新料掺量的增加而增加;新集料掺量每提高20%,CCWM的无侧限抗压强度提高8%~90%,劈裂强度提高5%~75%,抗压回弹模量提高2%~21%;建立的预估模型能够较好地预测CCWM各力学参数变化规律;CCWM无侧限抗压强度和劈裂强度的推荐参考值分别为2.7~5.5和0.59~1.06MPa,用于弯沉计算和拉应力计算的抗压回弹模量推荐参考值分别为1 300~1 900和1 700~2 200 MPa,可供路面设计与施工参考.  相似文献   

7.
为解决掺入灰土的水泥土稳定回收沥青路面材料(RAP)混合料基层强度不适用中国《公路沥青路面再生技术规范》(JTG/T 5521—2019)的问题,通过7 d无侧限抗压强度试验,研究不同温度下RAP掺量对水泥土稳定RAP混合料抗压强度的影响规律,提出基于温度域的水泥土稳定RAP基层强度标准值;分析温度对不同灰土掺量、水泥掺量、养生龄期下冷再生混合料性能的影响规律,提出基于温度域的水泥土稳定RAP混合料的强度标准及其配合比设计建议值。研究结果表明:对中、轻交通荷载等级公路,水泥土稳定RAP冷再生混合料无侧限抗压强度应不小于3.2 MPa;不同温度下水泥土稳定RAP混合料的无侧限抗压强度变化规律相近,即随RAP掺量增大而降低,RAP最佳掺量(质量分数,下同)为70%,水泥土稳定RAP混合料的无侧限抗压强度随灰土掺量增大而降低,且灰土的合理掺量范围为0%~40%;水泥的加入能够显著提高冷再生混合料的力学强度,且其前期强度增长较大,但随着水泥掺量的增加,其对混合料力学性能的增强效果逐渐减弱,水泥的掺量应控制在4.5%~5.5%;灰土的加入对冷再生混合料有不利影响,其冷再生混合料的力学强度逐渐降低,且灰土掺量在20%以下时,混合料的强度降低率较小,随着灰土掺量的增大,其力学强度的降低率增大,灰土的最佳掺量为10%~20%;水泥土稳定冷再生混合料的强度形成主要在初期,且灰土的加入对冷再生混合料的早期强度不利。  相似文献   

8.
为了确定PR-Module改性沥青混合料的力学性能和制备工艺参数,以SK-70#为基质沥青,选用PR-Module外掺剂制备改性沥青混合料,通过马歇尔试验、劈裂试验、静态抗压回弹模量试验和动态模量试验,研究PR-Module改性沥青混合料的制备工艺参数和力学性能。研究结果表明:掺入PR-Module改性剂后,PR-Module改性沥青混合料的制备工艺参数比未掺PR-Module的普通沥青混合料有较大变化;随着PR-Module掺量的增大,沥青混合料的劈裂强度先增大后减小;PR-Module外掺剂能明显提高沥青混合料的疲劳寿命和静态抗压回弹模量;在相同试验条件下,PR-Module改性沥青混合料比未掺PR-Module的普通沥青混合料的动态模量大、相位角小;依据Sigmoidal函数方程,建立了参考温度为20℃时PR-Module改性沥青混合料的动态模量主曲线,并与静态抗压回弹模量进行了对比分析,得出在相同温度下,静态抗压回弹模量与动态模量相对应的加载频率较小,大约为0.03~0.07Hz。  相似文献   

9.
为了研究低掺量水泥改善级配碎石力学和收缩性能规律,提高对低水泥掺量基层结构的认识,通过不同龄期与水泥掺量下的无侧限抗压强度、劈裂强度、加州承载比、抗压回弹模量和干燥收缩等试验,揭示了力学和收缩变化的规律,建立了强度和模量等四个力学参数随龄期和水泥掺量变化的对数增长预测模型,以及上述参数对应龄期之间的相互转化关系模型。研究结果表明龄期和水泥掺量对混合料力学和收缩性能影响显著,推荐水泥掺量在2.0%~2.5%范围内较为合适。  相似文献   

10.
为研究应用旧沥青路面材料冷再生基层的混合料力学性能,回收原沥青路面面层旧料和基层旧料,制备沥青路面全深式冷再生基层材料,结合现场沥青面层及铣刨深度测试冷再生材料级配,测试冷再生基层材料的7 d无侧限抗压强度、90 d劈裂强度和90 d回弹模量,并观察其SEM微观形貌图。结果表明:水泥用量较少时7 d无侧限抗压强度、90 d劈裂强度和90 d回弹模量均随水泥剂量的增加快速增长,但是增长趋势逐渐变缓;较少的沥青旧料对再生基层力学性能是有利的,但是过多的沥青旧料则会产生较大的负面影响;当面层旧料的油石比较小时,水泥水化物取向结晶能刺破沥青膜层,直接与裹附在沥青内部的集料接触,形成较强的界面,这样能有效缓解沥青对强度的负面影响。进而建议低等级公路的中、轻型交通等级水泥剂量在5%~7%,其他类型公路则在提高水泥剂量的同时需要改善旧料级配;油石比小的旧沥青路面改造更适合推行全深式冷再生基层技术。  相似文献   

11.
分别采用泡沫沥青与水泥作为稳定剂对泡沫沥青冷再生路面进行二次冷再生试验研究.研究表明,以泡沫沥青作稳定剂进行二次冷再生混合料设计形成的泡沫沥青二次冷再生混合料,其抗拉性能、水稳性能与二次冷再生混合料中细料含量有关;高温稳定性能与铣刨料用量、铣刨料中沥青老化程度以及二次冷再生混合料中细料含量有关.以水泥作稳定剂进行二次冷再生混合料设计,采用7d无侧限抗压强度能够很好地确定新添加骨料比例,适量的新添加骨料能明显增大二次冷再生混合料的7d无侧限抗压强度.根据室内研究成果,对试验路段进行辅筑,证明两种二次冷再生技术可行,辅筑路段路用性能良好.  相似文献   

12.
为了揭示冻融循环作用下泡沫沥青和乳化沥青冷再生混合料的疲劳损伤规律,设计了冻融循环试验方案,基于劈裂强试验、无侧限抗压强度试验、贯入剪切试验研究冻融循环作用对泡沫/乳化沥青冷再生混合料力学性能的劣化影响,以工业CT无损检测技术为研究平台,研究冻融循环作用对泡沫/乳化沥青冷再生混合料微细观空隙级配、空隙直径的影响规律。结果表明,冻融循环作用显著降低了泡沫/乳化沥青冷再生混合料的力学性能,总体上,泡沫沥青与乳化沥青冷再生混合料表现出了基本相同的力学性能,乳化沥青比泡沫沥青冷再生混合料有更好的抗损害性能。随着冻融循环次数增加,泡沫/乳化沥青冷再生混合料的平均空隙直径和最大空隙直径增大,大空隙数目增加,小空隙比例和空隙数目减小,随着平均空隙直径增大,泡沫/乳化沥青冷再生混合料劈裂强度、贯入剪切强度均呈指数函数关系减小。冻融循环作用下,泡沫/乳化沥青冷再生混合料内部微空隙数目减少、平均空隙直径增大是其力学性能衰减的主要原因之一。  相似文献   

13.
刘祥胜  葛折圣  李茜 《科学技术与工程》2012,12(21):5384-5386,5395
采用乳化沥青作为结合料,将回收水泥路面碎石化后破碎的粒料再生成冷拌沥青混合料。首先,通过马歇尔稳定度试验和劈裂强度试验确定再生混合料的最佳乳化沥青用量;然后,分别通过车辙试验和冻融劈裂试验评价了再生混合料的高温稳定性和水稳定性。结果表明,用回收水泥路面碎石化后破碎的粒料再生成的冷拌沥青混合料具有较高的力学强度,优良的高温性能和水稳定性,满足JTG F41—2008《公路沥青路面再生技术规范》要求。  相似文献   

14.
通过控制新集料掺加比例、泡沫沥青用量、水泥剂量、集料温度和抗剥落剂等,研究各因素对冷再生泡沫沥青混合料的路用性能和水稳定的影响,并揭示其微观机理.结果表明,旧料利用率、泡沫沥青用量、水泥剂量和抗剥落剂宜分别控制在50%~75%、 2.5%~3.0%、 1.0%~1.5%和0.5%左右.此外,适当提高集料温度,有助于提高泡沫沥青分散均匀性,从而提升冷再生泡沫沥青混合料的水稳定性.泡沫沥青用量和水泥剂量是冷再生泡沫沥青混合料水稳定的关键因素.尽量使泡沫沥青分散均匀,避免产生结团现象,是保证冷再生泡沫沥青混合料水稳定性的基础,进一步通过水泥补强作用,可获得良好的水稳定性.  相似文献   

15.
水泥稳定碎石基层的水泥用量和力学特性,直接影响沥青混凝土路面的使用寿命。本文结合湖北宜昌太平溪镇陈坛公路改建工程,探讨了不同级配及不同水泥掺量对水泥稳定碎石基层的重型击实指标和无侧限抗压强度指标的影响。研究结果表明:施工现场提供的碎石和黄砂经过合成级配之后,掺入4%、6%和8%的水泥稳定强度能够达到路用要求。同一级配下,掺入水泥的量越多,混合料的最佳含水率、最大干密度及无侧限抗压强度指标均越大;随着掺入水泥量的增加,最佳含水率增大趋势先快后慢,最大干密度和无侧限抗压强度增加的趋势先慢后快。同一水泥掺量下,混合料中碎石的含量越大,最佳含水率越小,最大干密度越大,无侧限抗压强度越大。综合考虑级配和水泥掺量对无侧限抗压强度指标的影响,工程实际选用碎石∶黄砂=60∶40,水泥掺量6%为施工指标。  相似文献   

16.
为了克服矿渣水泥稳定碎石基层早期强度不足的问题,选择氢氧化钠与硅酸钠两种碱性激发剂对矿渣水泥的活性进行激发,根据单掺试验结果掺配出一种复合碱激发剂,并研究了该复合碱激发剂对水稳碎石基层无侧限抗压强度、劈裂强度、抗弯拉强度、抗压回弹模量及干缩性能的影响。试验结果表明,掺入氢氧化钠或硅酸钠均能有效激发矿渣水泥的活性,二者的合理掺量分别为6%与4%,按此合理掺量复配而成的复合碱激发剂具有比单掺更优异的效果;该复合碱激发剂较好地提高了基层试块的无侧限抗压强度、劈裂强度、抗弯拉强度、抗压回弹模量,但对干缩性能产生了不利影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号