首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
基于控制图的工序加工状况模糊判别   总被引:4,自引:1,他引:3  
提出了监测工序加工状况的一种新方法。先对工序的检测数据进行常规统计分析,再通过模糊综合判别方法判别工序的稳定性。在计算机上模拟典型样本对建立的神经网络进行训练,然后用于工序状况的模糊判别,提高模糊判别的精确度。用实例对这种方法进行了说明。该方法适用于一代制造系统(NGMS)中的工序质量控制。  相似文献   

2.
本文对反馈放大电路常用判别方法的阐述进行了列表简化,并提出了快速判别方法。  相似文献   

3.
渗透破坏是引起尾矿坝事故的重要原因。渗透破坏模式不同,影响也不尽相同。有必要对其判别方法进行研究,进而有效预判可能发生的尾矿坝渗透破坏形式,从而更为有效的保护尾矿坝下游人员的生命与财产安全。通过开展铁尾矿的渗透破坏试验,电镜扫描观测,显微镜观测,对细颗粒含量与结构影响下的铁尾矿渗透破坏模式进行了分析。研究表明:1)应用现行的一些渗透破坏模式判别方法对铁尾矿渗透破坏模式进行判别时,其准确性降低。2)以达西定律为基础,提出采用渗透系数对平均孔隙直径进行计算的方法,这种方法可以有效计算均匀尾矿的平均孔隙直径,沉积尾矿粗、细粒层的平均孔隙直径。为后续尾矿渗透破坏模式的判别提供有力依据。3)提出了适用于铁尾矿的渗透破坏模式判别方法。对不同粒级与结构铁尾矿的渗透破坏模式判别准确性较高。开展砂槽试验,在较大尺度范围上对提出的铁尾矿渗透破坏模式判别方法进行了验证,结果较为准确。研究成果对维持尾矿坝安全运行具有一定指导意义。  相似文献   

4.
关于正项级数收敛性判别的一个推广   总被引:4,自引:0,他引:4  
为判别正项级数的收敛性,在一种新的比值判别法的基础上作了更进一步的推广,使其更具有一般性,同时,通过与达朗贝尔判别法,柯西判别法,拉贝尔判别法的比较,说明它比以上方法都强。  相似文献   

5.
果形识别中果梗判别与果轴确定方法   总被引:2,自引:0,他引:2  
果梗判别在果形判别中是很关键的一步,利用图像形态学运算和果实边界形状特征相结合的方法来判别果梗的位置,并确定对果形识别起关键作用的果轴,试验表明,果梗识别正确率达到80.5%.  相似文献   

6.
针对基于Hebb学习的离散Hopfield神经网络,论述了实现联想记忆功能的基本方法及其样本稳定性的基本思想。根据所存在的问题,提出了判别样本稳定性的充要条件,以及判别样本稳定的一个充分条件,使判别样本是否稳定变得简单易行。最后给出了判别样本稳定的矩阵表示形式,并对给出的定理以及推论给予了证明。  相似文献   

7.
波在媒质中传播时,各个媒质质点的运动方向随时间在不断地变化着。今试图对各个煤质质点在某个时刻的运动方向加以判别.判别的方法有二;其一是用媒质质点所在曲线的斜率值判别,其二是用媒质质点的相对位置来判别。  相似文献   

8.
根据级数的阿贝尔变换,对级数∑anbn收敛问题在狄里克雷判别法的基础上进行一些推广,得到可以判别级数收敛的另外一些方法.  相似文献   

9.
反馈放大电路常用判别方法,对此进行列表简化,并提出快速判别方法。  相似文献   

10.
本文以压缩主成分估计为基础,对广义线性模型的最优预测与经典预测的最优性判别问题进行了讨论,获得了在离差矩阵判别准则和广义风险函数判别准则下判断两类预测量最优性的一个充分条件,为进一步研究基于有偏估计关于两类预测量的最优性判别问题提供了一种方法和思路。  相似文献   

11.
钻井用钻头和钻柱扭转振动的仿真分析   总被引:2,自引:0,他引:2       下载免费PDF全文
介绍了钻井过程中钻头和钻柱扭转振动模型的建立方法和对其进行仿真分析的过程。在建模型时主要考虑了钻井过程中由于钻头与岩石相互作用及钻柱的弹性变形而引起的钻头和钻柱扭转振动,并采用数值计算方法求解钻柱扭转振模型,  相似文献   

12.
岩石钻掘过程中的钻头温度分析   总被引:2,自引:0,他引:2  
为深入研究钻头钻掘岩石过程中的温度变化规律,通过对钻头钻掘岩石的传热过程分析,建立描述钻头在钻掘岩石过程中温度变化的微分方程组,归纳影响钻头温度变化的各种影响因素。在对钻头钻掘岩石过程进行热功转换分析的基础上,给出钻头温度的解析计算方法,并结合钻头切削面温度解析计算式,给出钻头温度的解析方程。研究结果表明:钻头在钻掘岩石过程中的温度受几何条件、热物性质、钻掘参数等因素影响;在其他条件一定的情况下,钻头平均温度升高与钻头推进速度v的平方根成正比。  相似文献   

13.
鄂尔多斯气井钻井岩石力学特征描述难点及对策   总被引:1,自引:0,他引:1  
鄂尔多斯探区的气井钻遇多套复杂地层,利用常规方法计算的地层坍塌压力、漏失压力、可钻性等钻井岩石力学特征参数误差较大,导致前期钻井施工中井壁垮塌与漏失严重、钻头选型效果不佳。针对鄂尔多斯气井钻井岩石力学特征描述的难点,根据工区实际情况完善了水敏性泥页岩地层坍塌压力计算方法、破碎性地层漏失压力求取方法、岩性多变地层可钻性分析方法,利用测井、钻井、地质、测试等资料描述了坍塌压力、漏失压力、可钻性的分布特征;并依据其提出了工程建议。在富县、定北工区的现场应用情况表明该方法具有较好的适用性,为优质快速钻井技术提供了准确全面的基础信息。  相似文献   

14.
在硬岩中进行非开挖铺管是一国际性难题,其主要难点是如何在钻进过程中改变钻头行进轨迹.在分析目前非开挖硬岩钻进导向技术的基础上,针对非开挖硬岩地层气动潜孔锤钻进方式,首次提出并设计了摆动式潜孔锤驱动马达机构,分析并给出了该机构的设计理论依据,叙述了其工作原理,设计并制作了样机,通过试验证明方案可行,为解决非开挖硬岩钻进导向技术难题和关键技术提供了一种新的途径和方式.  相似文献   

15.
由于天然气水合物仅在高压低温条件下稳定存在,为了保持水合物稳定,在钻井过程中宜采用低温钻井液,而在低温条件下钻井液能否对井底岩石表层起到软化作用,对于提高机械钻速具有重要意义。在分析钻井液对井底岩石表层软化作用机制的基础上,较系统地建立低温钻井液软化井底岩石表层定量评价方法,以清水为对比浆液,通过试验将6种水合物地层模拟钻井液(分别含有质量分数为0.1%的表面活性剂和有机盐处理剂)在低温条件下对薄片砂岩试样的软化效果进行对比。结果表明:相比于两种有机盐处理剂,含表面活性剂的4种模拟钻井液在低温条件下对岩样软化效果更好,有利于提高岩石破碎效率和机械钻速;4种含表面活性剂钻井液中,含十二烷基硫酸钠(SDS)钻井液对岩样的软化效果最好。  相似文献   

16.
基于深中通道水下沉管隧道基槽凿岩工程,采用数值模拟方法研究了重锤凿岩棒受力状态和凿岩棒下落过程的速度变化规律以及凿岩棒凿击岩石的损伤发育特征,分析了不同水深、不同冲击速度、不同凿击次数对岩石破坏和损伤的影响规律。结果表明:凿岩棒下落过程中速度先线性增加然后增加幅度逐渐降低,最终趋于稳定的收尾速度;在凿岩棒凿击岩石过程中,其速度不断下降并伴随着岩石损伤的累积;水深与岩石的损伤呈负相关关系,而冲击速度和凿击次数与岩石的损伤呈正相关关系。  相似文献   

17.
钻井地质环境因素的分布特征决定着钻井工艺技术的适用性。详细论述了岩石力学参数、岩石可钻性、地应力状态、地层压力体系等钻井地质环境因素的描述方法;并介绍了其在鄂尔多斯盆地富县探区的应用情况。针对富县气井复杂的钻井地质环境,在常规方法的基础上优化完善了可钻性、井壁稳定等计算模型,综合应用测井、钻井、物探、地质、测试等资料进行钻井地质环境因素精细描述,明确了各类因素的纵向和横向分布特征。以描述成果为依据提出工程建议方案,并取得了良好的现场应用效果。  相似文献   

18.
激光作为一种新型破岩技术,在用于岩石隧道开挖技术的研究中已经取得了较大进展.本文在总结国内外激光破岩技术研究进展的基础之上,结合现有激光光束的特点,提出了适用于大断面脆性硬岩隧道的激光-喷水破岩方法,并通过数值模拟进一步分析了这种方法的破岩效果.该方法解决了激光光点小而隧道工程开挖断面大的矛盾,具有很强的实用性.  相似文献   

19.
利用高功率微波加热熔化岩石介质实现地下破岩是全新的钻探技术,其具有快速钻探的潜在优势。为进行4.6 GHz高功率微波加热穿透岩石技术研究,分析了微波加热岩石的基本原理和影响介质温升速率的因素,采用多物理场耦合法模拟10 kW功率下的电场分布和介质的温度变化规律,最后在4.6 GHz/250 kW实验平台上开展了相关钻岩实验。结果表明:高功率微波能量对硬岩石有很好的烧蚀效果;烧蚀的孔径大小与入射功率及辐射时间成正比。实验现象与仿真结果相吻合,为后续的微波钻探技术应用于实际钻井工程提供理论和实验指导。  相似文献   

20.
热力射流破岩技术是指利用高温介质诸如超临界水对岩石进行快速局部加热达到破碎岩石的目的。由于岩石基质热导率很低,因此会在岩石表面形成温度应力。当温度应力超过岩石的强度,会在岩石内部形成微裂缝,且裂缝不断扩展最终使得岩石表面发生热裂解,热裂解作用导致岩石表面从本体脱落从而使得岩石破碎。基于热-固耦合理论建立了热裂解钻井模型,利用Crank-Nicolson差分方法求解得到了热裂解过程中井底岩石温度场和温度应力的分布规律。结果表明,在热裂解钻井过程中,岩石受热部分温度迅速升高,在径向和轴向方向上产生温度梯度;受热部分体积膨胀在径向方向上受到压应力作用,在轴向方向上发生屈曲,受到剪应力作用。研究成果对热裂解钻井的现场应用具有十分重要的指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号