首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bjerrum CJ  Canfield DE 《Nature》2002,417(6885):159-162
After the evolution of oxygen-producing cyanobacteria at some time before 2.7 billion years ago, oxygen production on Earth is thought to have depended on the availability of nutrients in the oceans, such as phosphorus (in the form of orthophosphate). In the modern oceans, a significant removal pathway for phosphorus occurs by way of its adsorption onto iron oxide deposits. Such deposits were thought to be more abundant in the past when, under low sulphate conditions, the formation of large amounts of iron oxides resulted in the deposition of banded iron formations. Under these circumstances, phosphorus removal by iron oxide adsorption could have been enhanced. Here we analyse the phosphorus and iron content of banded iron formations to show that ocean orthophosphate concentrations from 3.2 to 1.9 billion years ago (during the Archaean and early Proterozoic eras) were probably only approximately 10-25% of present-day concentrations. We suggest therefore that low phosphorus availability should have significantly reduced rates of photosynthesis and carbon burial, thereby reducing the long-term oxygen production on the early Earth--as previously speculated--and contributing to the low concentrations of atmospheric oxygen during the late Archaean and early Proterozoic.  相似文献   

2.
The snowball Earth hypothesis postulates that the planet was entirely covered by ice for millions of years in the Neoproterozoic era, in a self-enhanced glaciation caused by the high albedo of the ice-covered planet. In a hard-snowball picture, the subsequent rapid unfreezing resulted from an ultra-greenhouse event attributed to the buildup of volcanic carbon dioxide (CO(2)) during glaciation. High partial pressures of atmospheric CO(2) (pCO2; from 20,000 to 90,000?p.p.m.v.) in the aftermath of the Marinoan glaciation (~635?Myr ago) have been inferred from both boron and triple oxygen isotopes. These pCO2 values are 50 to 225 times higher than present-day levels. Here, we re-evaluate these estimates using paired carbon isotopic data for carbonate layers that cap Neoproterozoic glacial deposits and are considered to record post-glacial sea level rise. The new data reported here for Brazilian cap carbonates, together with previous ones for time-equivalent units, provide estimates lower than 3,200?p.p.m.v.--and possibly as low as the current value of ~400?p.p.m.v. Our new constraint, and our re-interpretation of the boron and triple oxygen isotope data, provide a completely different picture of the late Neoproterozoic environment, with low atmospheric concentrations of carbon dioxide and oxygen that are inconsistent with a hard-snowball Earth.  相似文献   

3.
Peltier WR  Liu Y  Crowley JW 《Nature》2007,450(7171):813-818
The 'snowball Earth' hypothesis posits the occurrence of a sequence of glaciations in the Earth's history sufficiently deep that photosynthetic activity was essentially arrested. Because the time interval during which these events are believed to have occurred immediately preceded the Cambrian explosion of life, the issue as to whether such snowball states actually developed has important implications for our understanding of evolutionary biology. Here we couple an explicit model of the Neoproterozoic carbon cycle to a model of the physical climate system. We show that the drawdown of atmospheric oxygen into the ocean, as surface temperatures decline, operates so as to increase the rate of remineralization of a massive pool of dissolved organic carbon. This leads directly to an increase of atmospheric carbon dioxide, enhanced greenhouse warming of the surface of the Earth, and the prevention of a snowball state.  相似文献   

4.
'Hyperthermals' are intervals of rapid, pronounced global warming known from six episodes within the Palaeocene and Eocene epochs (~65-34 million years (Myr) ago). The most extreme hyperthermal was the ~170 thousand year (kyr) interval of 5-7 °C global warming during the Palaeocene-Eocene Thermal Maximum (PETM, 56?Myr ago). The PETM is widely attributed to massive release of greenhouse gases from buried sedimentary carbon reservoirs, and other, comparatively modest, hyperthermals have also been linked to the release of sedimentary carbon. Here we show, using new 2.4-Myr-long Eocene deep ocean records, that the comparatively modest hyperthermals are much more numerous than previously documented, paced by the eccentricity of Earth's orbit and have shorter durations (~40?kyr) and more rapid recovery phases than the PETM. These findings point to the operation of fundamentally different forcing and feedback mechanisms than for the PETM, involving redistribution of carbon among Earth's readily exchangeable surface reservoirs rather than carbon exhumation from, and subsequent burial back into, the sedimentary reservoir. Specifically, we interpret our records to indicate repeated, large-scale releases of dissolved organic carbon (at least 1,600 gigatonnes) from the ocean by ventilation (strengthened oxidation) of the ocean interior. The rapid recovery of the carbon cycle following each Eocene hyperthermal strongly suggests that carbon was re-sequestered by the ocean, rather than the much slower process of silicate rock weathering proposed for the PETM. Our findings suggest that these pronounced climate warming events were driven not by repeated releases of carbon from buried sedimentary sources, but, rather, by patterns of surficial carbon redistribution familiar from younger intervals of Earth history.  相似文献   

5.
Atmospheric carbon dioxide concentrations over the past 60 million years   总被引:48,自引:0,他引:48  
Pearson PN  Palmer MR 《Nature》2000,406(6797):695-699
Knowledge of the evolution of atmospheric carbon dioxide concentrations throughout the Earth's history is important for a reconstruction of the links between climate and radiative forcing of the Earth's surface temperatures. Although atmospheric carbon dioxide concentrations in the early Cenozoic era (about 60 Myr ago) are widely believed to have been higher than at present, there is disagreement regarding the exact carbon dioxide levels, the timing of the decline and the mechanisms that are most important for the control of CO2 concentrations over geological timescales. Here we use the boron-isotope ratios of ancient planktonic foraminifer shells to estimate the pH of surface-layer sea water throughout the past 60 million years, which can be used to reconstruct atmospheric CO2 concentrations. We estimate CO2 concentrations of more than 2,000 p.p.m. for the late Palaeocene and earliest Eocene periods (from about 60 to 52 Myr ago), and find an erratic decline between 55 and 40 Myr ago that may have been caused by reduced CO2 outgassing from ocean ridges, volcanoes and metamorphic belts and increased carbon burial. Since the early Miocene (about 24 Myr ago), atmospheric CO2 concentrations appear to have remained below 500 p.p.m. and were more stable than before, although transient intervals of CO2 reduction may have occurred during periods of rapid cooling approximately 15 and 3 Myr ago.  相似文献   

6.
Oxidation of the Ediacaran ocean   总被引:4,自引:0,他引:4  
Fike DA  Grotzinger JP  Pratt LM  Summons RE 《Nature》2006,444(7120):744-747
Oxygenation of the Earth's surface is increasingly thought to have occurred in two steps. The first step, which occurred approximately 2,300 million years (Myr) ago, involved a significant increase in atmospheric oxygen concentrations and oxygenation of the surface ocean. A further increase in atmospheric oxygen appears to have taken place during the late Neoproterozoic period ( approximately 800-542 Myr ago). This increase may have stimulated the evolution of macroscopic multicellular animals and the subsequent radiation of calcified invertebrates, and may have led to oxygenation of the deep ocean. However, the nature and timing of Neoproterozoic oxidation remain uncertain. Here we present high-resolution carbon isotope and sulphur isotope records from the Huqf Supergroup, Sultanate of Oman, that cover most of the Ediacaran period (approximately 635 to approximately 548 Myr ago). These records indicate that the ocean became increasingly oxygenated after the end of the Marinoan glaciation, and they allow us to identify three distinct stages of oxidation. When considered in the context of other records from this period, our data indicate that certain groups of eukaryotic organisms appeared and diversified during the second and third stages of oxygenation. The second stage corresponds with the Shuram excursion in the carbon isotope record and seems to have involved the oxidation of a large reservoir of organic carbon suspended in the deep ocean, indicating that this event may have had a key role in the evolution of eukaryotic organisms. Our data thus provide new insights into the oxygenation of the Ediacaran ocean and the stepwise restructuring of the carbon and sulphur cycles that occurred during this significant period of Earth's history.  相似文献   

7.
Phosphate concentrations in lakes   总被引:13,自引:0,他引:13  
Hudson JJ  Taylor WD  Schindler DW 《Nature》2000,406(6791):54-56
Phosphate is an important nutrient that restricts microbial production in many freshwater and marine environments. The actual concentration of phosphate in phosphorus-limited waters is largely unknown because commonly used chemical and radiochemical techniques overestimate the concentration. Here, using a new steady-state radiobioassay to survey a diverse set of lakes, we report phosphate concentrations in lakes that are orders of magnitude lower than estimates made spectrophotometrically or with the frequently used Rigler radiobioassay. Our results, combined with those from the literature, indicate that microbes can achieve rapid turnover rates at picomolar nutrient concentrations. This occurs even though these concentrations are about two orders of magnitude below the level where phosphate uptake is estimated to be half the saturation level for the pico-plankton community. Also, while phosphate concentration increased with the concentration of total phosphorus and soluble reactive phosphorus in the lakes we sampled, the proportion of phosphate in the total phosphorus pool decreased from oligotrophic to eutrophic lakes. Such information, as revealed by the phosphate assay that we use here, should allow us to address hypotheses concerning the concentration of phosphate available to planktonic microorganisms in aquatic systems.  相似文献   

8.
利用现场连续采样监测分析和模型模拟确定了福建盆谷型农业小流域不同水文时期农业氮磷迁移和流失的模式和关键源区.2002年每月基流时期的水质采样分析表明:可溶态氮从流域的源头区到流域的出口区表现为上升的趋势,但是可溶态磷却表现为下降的趋势.由于小流域内部土壤空间的物理和化学性质的分异,流域源头区是可溶态磷的关键源区,而流域的出口区是可溶态氮的关键源区.通过用实测数据检验后的agri-cultural non-point source model模型,确定了流域两侧的坡地区是可溶态氮磷流失和迁移的关键源区.  相似文献   

9.
Neoproterozoic magmatic activity and global change   总被引:36,自引:10,他引:26  
Neoproterozoic is a very important time in the history of the Earth, during which occurred supercontinent breakup, low-latitude glaciation, and biotic diversification.These concern a series of interdisciplinary studies involving ancient plate motion, climate change and life evolution, resulting in many forefront topics of general interest in the earth sciences. These include exact ages bracketing the Cryogenian System and glaciations, initial age and lasted duration of supercontinent breakup, dynamic reconstruction of China continents in supercontinental configurations, the nature of rift magmatism and extent of hydrothermal alteration, paleoclimatic implication of water-rock interaction and Iow-^18O magmatism, and relationship between supercontinental evolution and global change. A number of outstanding advances in the above aspects have being made by Chinese scientists, leaving many important issues to be resolved: (1)did the Cryogenian start at either 800 to 820 Ma or 760 to 780 Ma? (2) was South China in the supercontinental configuration located in either southeast to Australia or north to India? (3) are Paleoproterozoic to Archean ages of crustal rocks a valid parameter in distinguishing North China from South China? Available observations suggest that Neoproterozoic mantle superwelling occurred as conspicuous magmatism in South China but as cryptical magmatism in North China. Mid-Neoproterozoic mantle superplume event and its derived rift-magmatism would not only result in the supercontinental demise, but also play a very important role in the generation and evolution of the snowball Earth event by initiating the global glaciation, causing the local deglaciation and terminating the snowball Earth event.  相似文献   

10.
以杜塘水库大坝断面的沉积物为对象,通过对上覆水-沉积物界面的好氧/厌氧连续培养模拟实验,比较灭菌与非灭菌条件下,上覆水中溶解性无机磷、溶解性铁等离子的质量浓度变化,并分析培养前后沉积物中各形态磷以及与磷循环相关微生物的变化,研究微生物对磷释放的影响.结果表明,有氧条件下,沉积物主要在微生物的矿化作用下释放磷,而厌氧条件下,沉积物主要通过微生物还原沉积物中铁来促进磷的释放,微生物对沉积物磷的内源释放具有重要的影响;沉积物中有机磷和铁/铝结合形态磷是沉积物中较容易释放的组分;对培养前后异养好氧菌、有机解磷菌、无机解磷菌的数量进行了比较,发现培养条件下各种细菌明显增多,证实了沉积物中与磷循环相关微生物的存在以及对磷元素释放的可能影响.  相似文献   

11.
采集生活污水,从中分离出具有解有机磷能力的菌株,纯化得到14株解有机磷细菌。通过平板法测定溶磷圈后,筛选出4株解磷能力较强的菌株进一步做解磷能力的定量测定。结果发现,OPB8、OPB17、OPB15、OPB19菌株达到解磷峰值时,解磷率分别为107.9%、135.1%、31.8%和249.2%,随着培养时间的延长,培养液中的水溶性磷含量均有下降,其中OPB15、OPB19菌株的培养液中的水溶性磷含量分别降低了72.2%和95.7%。  相似文献   

12.
三峡库区澎溪河流域不同高程消落带土壤磷形态特征   总被引:2,自引:0,他引:2  
研究了三峡库区澎溪河流域落干期不同高程消落带土壤不同磷形态分布特征,并分析了各形态磷与土壤理化性质之间的相关性。结果表明,澎溪河流域消落带土壤TP含量均值为599.00 mg/kg,消落带土壤TP、IP含量均沿高程逐渐下降。消落带土壤活性磷(Ac-P)含量明显低于180 m的岸边土壤,155,145 m消落带土壤Ac-P含量低于165 m消落带土壤,与140 m沉积物中Ac-P含量相近,表明频繁的干湿交替会加剧消落带Ac-P的流失。消落带土壤TP、IP和Ca-P均与pH值表现出显著的负相关关系,表明pH对土壤磷形态的含量有着重要影响;OM与Or-P表现出极显著的正相关性,表明有机质的输入在一定程度上会影响Or-P的含量。  相似文献   

13.
Oceanic Cd/P ratio and nutrient utilization in the glacial Southern Ocean   总被引:1,自引:0,他引:1  
Elderfield H  Rickaby RE 《Nature》2000,405(6784):305-310
During glacial periods, low atmospheric carbon dioxide concentration has been associated with increased oceanic carbon uptake, particularly in the southern oceans. The mechanism involved remains unclear. Because ocean productivity is strongly influenced by nutrient levels, palaeo-oceanographic proxies have been applied to investigate nutrient utilization in surface water across glacial transitions. Here we show that present-day cadmium and phosphorus concentrations in the global oceans can be explained by a chemical fractionation during particle formation, whereby uptake of cadmium occurs in preference to uptake of phosphorus. This allows the reconstruction of past surface water phosphate concentrations from the cadmium/calcium ratio of planktonic foraminifera. Results from the Last Glacial Maximum show similar phosphate utilization in the subantarctic to that of today, but much smaller utilization in the polar Southern Ocean, in a model that is consistent with the expansion of glacial sea ice and which can reconcile all proxy records of polar nutrient utilization. By restricting communication between the ocean and atmosphere, sea ice expansion also provides a mechanism for reduced CO2 release by the Southern Ocean and lower glacial atmospheric CO2.  相似文献   

14.
The factors that control the growth and nitrogen fixation rates of marine diazotrophs such as Trichodesmium have been intensively studied because of the role that these processes have in the global cycling of carbon and nitrogen, and in the sequestration of carbon to the deep sea. Because the phosphate concentrations of many ocean gyres are low, the bioavailability of the larger, chemically heterogeneous pool of dissolved organic phosphorus could markedly influence Trichodesmium physiology. Here we describe the induction, by phosphorus stress, of genes from the Trichodesmium erythraeum IMS101 genome that are predicted to encode proteins associated with the high-affinity transport and hydrolysis of phosphonate compounds by a carbon-phosphorus lyase pathway. We show the importance of these genes through expression analyses with T. erythraeum from the Sargasso Sea. Phosphonates are known to be present in oligotrophic marine systems, but have not previously been considered to be bioavailable to marine diazotrophs. The apparent absence of genes encoding a carbon-phosphorus lyase pathway in the other marine cyanobacterial genomes suggests that, relative to other phytoplankton, Trichodesmium is uniquely adapted for scavenging phosphorus from organic sources. This adaptation may help to explain the prevalence of Trichodesmium in low phosphate, oligotrophic systems.  相似文献   

15.
在氨性介质中,PO43-与镁合剂生成MgNH4PO4沉淀,经稀硝酸溶解后,以火焰原子吸收法测定镁,从而间接得到磷的含量。本方法线性范围为成:0~48.95mg/L,磷的回收率为95.3%~106.7%,相对标准偏差为1.4%。将方法应用于菠菜、芹菜的不同部位中磷的测定,结果满意。同时直接测定了上述样品中镁的含量,镁的回收率为98.2%~104.3%。  相似文献   

16.
Tiwari RK  Rao KN 《Nature》1999,400(6739):31-32
There have been arguments both for and against a periodicity of 26-33 million years (Myr) in terrestrial and extraterrestrial records. The best way to identify such periodicity is the analysis of geomarine evolutionary records. We have analysed the marine sedimentary phosphorus burial rate (PBR), as fluctuations in this rate are strong indicators of the coupling of climate, continental weathering and ocean primary productivity. We find a statistically significant harmonic component of 33 +/- 3 Myr against the estimated robust background noise spectrum, supporting the idea that geomarine processes are cyclic.  相似文献   

17.
LaRiviere JP  Ravelo AC  Crimmins A  Dekens PS  Ford HL  Lyle M  Wara MW 《Nature》2012,486(7401):97-100
Deep-time palaeoclimate studies are vitally important for developing a complete understanding of climate responses to changes in the atmospheric carbon dioxide concentration (that is, the atmospheric partial pressure of CO(2), p(co(2))). Although past studies have explored these responses during portions of the Cenozoic era (the most recent 65.5 million years (Myr) of Earth history), comparatively little is known about the climate of the late Miocene (~12-5 Myr ago), an interval with p(co(2)) values of only 200-350?parts per million by volume but nearly ice-free conditions in the Northern Hemisphere and warmer-than-modern temperatures on the continents. Here we present quantitative geochemical sea surface temperature estimates from the Miocene mid-latitude North Pacific Ocean, and show that oceanic warmth persisted throughout the interval of low p(co(2)) ~12-5 Myr ago. We also present new stable isotope measurements from the western equatorial Pacific that, in conjunction with previously published data, reveal a long-term trend of thermocline shoaling in the equatorial Pacific since ~13?Myr ago. We propose that a relatively deep global thermocline, reductions in low-latitude gradients in sea surface temperature, and cloud and water vapour feedbacks may help to explain the warmth of the late Miocene. Additional shoaling of the thermocline after 5?Myr ago probably explains the stronger coupling between p(co(2)), sea surface temperatures and climate that is characteristic of the more recent Pliocene and Pleistocene epochs.  相似文献   

18.
Bains S  Norris RD  Corfield RM  Faul KL 《Nature》2000,407(6801):171-174
The onset of the Palaeocene/Eocene thermal maximum (about 55 Myr ago) was marked by global surface temperatures warming by 5-7 degrees C over approximately 30,000 yr (ref. 1), probably because of enhanced mantle outgassing and the pulsed release of approximately 1,500 gigatonnes of methane carbon from decomposing gas-hydrate reservoirs. The aftermath of this rapid, intense and global warming event may be the best example in the geological record of the response of the Earth to high atmospheric carbon dioxide concentrations and high temperatures. This response has been suggested to include an intensified flux of organic carbon from the ocean surface to the deep ocean and its subsequent burial through biogeochemical feedback mechanisms. Here we present firm evidence for this view from two ocean drilling cores, which record the largest accumulation rates of biogenic barium--indicative of export palaeoproductivity--at times of maximum global temperatures and peak excursion values of delta13C. The unusually rapid return of delta13C to values similar to those before the methane release and the apparent coupling of the accumulation rates of biogenic barium to temperature, suggests that the enhanced deposition of organic matter to the deep sea may have efficiently cooled this greenhouse climate by the rapid removal of excess carbon dioxide from the atmosphere.  相似文献   

19.
Ocean nutrient ratios governed by plankton biogeography   总被引:1,自引:0,他引:1  
Weber TS  Deutsch C 《Nature》2010,467(7315):550-554
The major nutrients nitrate and phosphate have one of the strongest correlations in the sea, with a slope similar to the average nitrogen (N) to phosphorus (P) content of plankton biomass (N/P = 16:1). The processes through which this global relationship emerges despite the wide range of N/P ratios at the organism level are not known. Here we use an ocean circulation model and observed nutrient distributions to show that the N/P ratio of biological nutrient removal varies across latitude in Southern Ocean surface waters, from 12:1 in the polar ocean to 20:1 in the sub-Antarctic zone. These variations are governed by regional differences in the species composition of the plankton community. The covariation of dissolved nitrate and phosphate is maintained by ocean circulation, which mixes the shallow subsurface nutrients between distinct biogeographic provinces. Climate-driven shifts in these marine biomes may alter the mean N/P ratio and the associated carbon export by Southern Ocean ecosystems.  相似文献   

20.
Tracing the stepwise oxygenation of the Proterozoic ocean   总被引:9,自引:0,他引:9  
Scott C  Lyons TW  Bekker A  Shen Y  Poulton SW  Chu X  Anbar AD 《Nature》2008,452(7186):456-459
Biogeochemical signatures preserved in ancient sedimentary rocks provide clues to the nature and timing of the oxygenation of the Earth's atmosphere. Geochemical data suggest that oxygenation proceeded in two broad steps near the beginning and end of the Proterozoic eon (2,500 to 542 million years ago). The oxidation state of the Proterozoic ocean between these two steps and the timing of deep-ocean oxygenation have important implications for the evolutionary course of life on Earth but remain poorly known. Here we present a new perspective on ocean oxygenation based on the authigenic accumulation of the redox-sensitive transition element molybdenum in sulphidic black shales. Accumulation of authigenic molybdenum from sea water is already seen in shales by 2,650 Myr ago; however, the small magnitudes of these enrichments reflect weak or transient sources of dissolved molybdenum before about 2,200 Myr ago, consistent with minimal oxidative weathering of the continents. Enrichments indicative of persistent and vigorous oxidative weathering appear in shales deposited at roughly 2,150 Myr ago, more than 200 million years after the initial rise in atmospheric oxygen. Subsequent expansion of sulphidic conditions after about 1,800 Myr ago (refs 8, 9) maintained a mid-Proterozoic molybdenum reservoir below 20 per cent of the modern inventory, which in turn may have acted as a nutrient feedback limiting the spatiotemporal distribution of euxinic (sulphidic) bottom waters and perhaps the evolutionary and ecological expansion of eukaryotic organisms. By 551 Myr ago, molybdenum contents reflect a greatly expanded oceanic reservoir due to oxygenation of the deep ocean and corresponding decrease in sulphidic conditions in the sediments and water column.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号