首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
通过高温固相法合成系列Sm3+掺杂LnNbO4(Ln=La,Y)红色荧光粉,并对样品的物相结构、荧光特性、衰减寿命和荧光热猝灭等性能进行实验分析。分析结果表明:合成的样品不含杂质相,可以被近紫外光LED和蓝光LED芯片有效激发,发出色坐标为(0615 5,0380 2)的红光对于LnNbO4(Ln=La,Y)基质来说,Sm3+掺杂LaNbO4基质的荧光强度比较强,最佳的Sm3+掺杂浓度为2%;随着Sm3+掺杂浓度的提高衰减寿命曲线由单指数线形变双指数线形,且衰减寿命不断变短;Sm3+之间的电偶极 电偶极作用是导致荧光浓度猝灭发生的原因;样品在293~450 K这一温度范围内具有良好的热稳定性。说明Sm3+掺杂的LaNbO4红色荧光粉具备成为白光LED用红色荧光粉的潜力。  相似文献   

2.
Gd_2Mo_4O_(15):Eu~(3+)荧光材料的制备与发光性能研究   总被引:4,自引:2,他引:2  
采用了高温固相法制备了稀土离子Eu3+掺杂的Gd2M04O15:Eu3+荧光粉,通过X-射线衍射(XRD)和荧光光谱的测定,分别讨论了烧结温度、烧结时间以及稀土离子Eu3+掺杂量对发光性能的影响.测试结果表明Gd2Mo4O15:Eu3+荧光粉在近紫外区(uv)(393 nm)和蓝光区(464 nm)可以被有效的激发,Gd2Mo4O15:Eu3+荧光粉发出明亮的红光,对应于Eu3+的4f-4f跃迁,当Eu3+的掺杂浓度约为40 mol%时,在616nm处的发光强度最大.在393,464 nm的吸收分别与目前应用的紫外光和蓝光LED芯片相匹配.因此,Gd2Mo4015:Eu3+是一种可能应用在白光LED上的红色荧光材料.  相似文献   

3.
采用改进高温固相法合成了Eu3+掺杂的LaBa2VO6红色荧光粉,用X-射线衍射仪和荧光分光光度计对样品进行了表征.结果表明:煅烧温度为900℃时,晶型形成比较完全,Eu3+成功掺入LaBa2 VO6晶格中;荧光强度随着Eu3+掺杂浓度的升高先增强后减弱,Eu3+的最佳掺杂浓度(Eu3+取代La3+的摩尔百分比)为11%;用466nm激发光源激发样品显示出强616nm红光发射.该荧光粉与蓝光LED相匹配,适合用于蓝光转换型红色荧光粉.  相似文献   

4.
用Na+做电荷补偿剂,Sm3+做敏化剂,采用高温固相法制备了Ca0.5MoO4:Eu3+0.25-x,Sm3+x,Na+0.25(x=0,0.001,0.003,0.005,0.008,0.01,0.02,0.03,0.05,0.07,0.09)系列红色荧光粉,实验结果表明:Sm3+的加入没有改变CaMoO4:Eu3+,Na+的晶体结构,也没有改变粉体发射光谱的形状和发射峰的位置,而是加宽了荧光粉CaMoO4:Eu3+,Na+激发光谱在400 nm左右的吸收峰,有利于样品的激发峰和近紫外LED芯片相匹配,并且提高了荧光粉在615 nm处发射光谱的发光强度.本文主要对Sm3+提高荧光粉的发光强度的原理进行探讨,研究结果证明在CaMoO4基质中存在Sm3+-Eu3+之间能量传递,此外得出Sm3+的最佳掺杂浓度是0.5 at.%.  相似文献   

5.
为寻找应用于白光LED的红色荧光粉,采用固相法成功地合成了Ba0.5Sr0.5MoO4∶Pr3+x(0.005≤x≤0.04)红光荧光粉,并对样品分别进行了X射线衍射分析、透射电镜测试和荧光光谱的测定.通过表征可知,该荧光粉可被400~500 nm蓝光范围有效激发,掺杂Pr3+并未显著影响样品的晶体结构,最佳掺杂x为0.02.同时讨论了温度和基质对晶体结构以及发光性能的影响.  相似文献   

6.
氧化钇(Y2O3)、 氧化铕(Eu2O3)与三氧化钨(WO3)为原材料,通过调整Y2O3(Eu2O3)与WO3的摩尔比例,采用高温固相法制备钨酸钇体系红色荧光粉,通过X射线衍射(XRD)、扫描电子显微镜(SEM)、光致发光(PL)等表征分析样品的晶相结构、形貌尺寸和光致发光性质。研究结果表明:当Y2O3与WO3的摩尔比例为1∶1和1∶3时,可分别合成纯相的Y2WO6:Eu3+红色荧光粉和Y2W3O12:Eu3+红色荧光粉;该系列红色荧光粉可被近紫外光和蓝光有效激发,发射峰值位于615 nm(Eu3+离子的5D0→7F2跃迁)的红光;Y2WO6:Eu3+红色荧光粉的相对发光强度明显优于Y2W3O12:Eu3+红色荧光粉;Y2WO6:Eu3+红色荧光粉Eu3+的最佳掺杂浓度(摩尔分数)为5%。  相似文献   

7.
采用高温固相反应成功地制备出Mn~(4+)激活的Mg_2TiO_4∶Mn~(4+)红色荧光粉,并对它的结构及发光性能进行了测试表征.实验结果表明:合成的样品能被270~570 nm的紫外光和蓝光有效地激发,产生很强的红光发射.样品的主发射峰位于660 nm左右,这对应于Mn~(4+)的2E2→4A2跃迁.通过Mn~(4+)掺杂浓度的调控,优化了Mg_2TiO_4∶Mn~(4+)的发光性能.最后将优化后的Mg_2TiO_4∶0.002 5Mn~(4+)荧光粉和YAG涂覆于~465 nm发射的Ga N芯片上,制作成暖白光发光二极管(LED).该LED器件表现出很强的暖白光发射.  相似文献   

8.
采用高温固相法制备了Sr3Y2(GeO4)3∶Dy3+荧光粉,利用X射线粉末衍射、荧光光谱等分析手段对荧光粉样品进行了表征,分析了其发光特性.讨论了Dy3+离子掺杂浓度以及添加不同助熔剂对Sr3Y2(GeO4)3∶Dy3+荧光粉发光强度的影响,并计算了发光材料的色坐标.研究结果表明,样品在388nm近紫外光激发下发射出强烈的蓝光(481nm)和黄光(573nm);Dy3+浓度影响其发光强度,随着Dy3+浓度的增大,荧光强度增强明显,色坐标越接近纯白光色坐标(0.33,0.33);当Dy3+浓度达到12%时,样品的荧光强度最强,色坐标为(0.32,0.33).  相似文献   

9.
采用水热法合成Mn4+掺杂的SrGe4O9红色荧光粉,利用X射线衍射仪(XRD)和荧光光谱仪(FS)表征荧光粉的晶体结构并分析其荧光性质,利用电子顺磁共振谱(EPR)确定Mn的化学形态.讨论掺杂不同摩尔分数Mn4+对样品发光强度的影响,并比较水热法与固相法制备荧光粉的发光特性.结果表明,SrGe4O9∶Mn4+在423nm激发下发射656nm红光,对应于Mn4+的2E2→4A2跃迁.  相似文献   

10.
通过水浴离子交换法,制备出长波紫外激发的Eu3+/Eu2+多色发光中心荧光材料,并研究了烧结温度对结构和光学性质的影响.结果表明:随着Eu3+离子掺杂浓度的升高,615 nm处的红光锐线发射峰逐渐增强,当掺杂浓度为5%时,效果最好,随着Eu3+离子掺杂浓度的继续增加,红光光强逐渐减弱;当掺杂浓度为3%时,448 nm处的蓝光发射效果最好,随着浓度的继续增加,蓝光光强也逐渐减弱.  相似文献   

11.
寻找能应用于白光LED的红色荧光粉,以稀土氧化物为原料,采用高温固相法制备Pr3+掺杂Sr2LaTaO6系列红色荧光粉,再通过XRD、SEM及荧光光谱仪等仪器对样品的物相结构、形貌特征、荧光特性、衰减寿命和荧光热猝灭等性能进行实验分析。结果表明:样品物相纯正、结晶度好,Pr3+的掺杂没有改变基质的晶体结构;样品可以被蓝光有效激发,发出色坐标为(0663 0,0336 6)的红光;Pr3+的最佳掺杂浓度(摩尔分数)为01%,随着Pr3+掺杂浓度(摩尔分数)不断高于该浓度,其荧光强度和衰减寿命都会递减;样品在室温到400 K这一温度范围内热稳定性良好。表明Pr3+掺杂的Sr2LaTaO6红色荧光粉有望应用于白光LED。  相似文献   

12.
采用高温固相法制备了Sr3Y2 (GeO4)3∶Dy3+荧光粉, 利用X射线粉末衍射、 荧光光谱等分析手段对荧光粉样品进行了表征, 分析了其发光特性. 讨论了Dy3+离子掺杂浓度以及添加不同助熔剂对Sr3Y2 (GeO4)3∶Dy3+荧光粉发光强度的影响, 并计算了发光材料的色坐标. 研究结果表明, 样品在388nm近紫外光激发下发射出强烈的蓝光(481nm)和黄光(573nm); Dy3+浓度影响其发光强度, 随着Dy3+浓度的增大, 荧光强度增强明显, 色坐标越接近纯白光色坐标(0.33, 0.33); 当Dy3+浓度达到12%时, 样品的荧光强度最强, 色坐标为(0.32, 0.33).  相似文献   

13.
采用高温固相法制备了Sr3Y2 (GeO4)3∶Dy3+荧光粉, 利用X射线粉末衍射、 荧光光谱等分析手段对荧光粉样品进行了表征, 分析了其发光特性. 讨论了Dy3+离子掺杂浓度以及添加不同助熔剂对Sr3Y2 (GeO4)3∶Dy3+荧光粉发光强度的影响, 并计算了发光材料的色坐标. 研究结果表明, 样品在388nm近紫外光激发下发射出强烈的蓝光(481nm)和黄光(573nm); Dy3+浓度影响其发光强度, 随着Dy3+浓度的增大, 荧光强度增强明显, 色坐标越接近纯白光色坐标(0.33, 0.33); 当Dy3+浓度达到12%时, 样品的荧光强度最强, 色坐标为(0.32, 0.33).  相似文献   

14.
用共沉淀法合成YAG:(Ce3+-Sm3+)前驱体后,在N2还原气氛下用高温灼烧法制备YAG:(Ce3+-Sm3+)荧光粉,并对Sm3+的掺杂浓度、样品的晶相以及表面形貌进行研究。同时,也对Sm3+与Ce3+之间Sm3+→Ce3+的能量转移机理进行了讨论。当Sm3+掺杂浓度(Sm3+/Ce3+为10%)时,其发射光谱强度能增加约3倍,并伴有明显的红移;合成的荧光粉体粒径大小在2~4μm时,有望与不同波长的蓝光LED组合,以期获得不同性质的白光LED。  相似文献   

15.
采用高温固相法合成KGd(WO4)2:Sm3+荧光粉,样品在近紫外区404nm光激发下发射出Sm3+的特征光谱.通过X射线粉末衍射、荧光光谱等对其进行了表征,并分析了其发光特性,结果表明:在KGd(WO4)2:Sm3+中Sm3+离子最佳的掺杂量为5%(摩尔分数);烧结温度为1 000℃、助熔剂H3BO3的浓度为2%(摩尔分数)时,样品的发光强度最强.  相似文献   

16.
首次采用高温固相法制备了YVO4∶Ce3+荧光粉,对不同Ce3+掺杂浓度下XRD图样与国际标准衍射卡对比后发现在1 100 ℃保温9 h合成的Ce3+∶YVO4为四方晶系结构,随保温时间延长,结晶程度更好,但时间再长时,结晶变化已不大.荧光光谱表明,激发光谱为双峰结构,主峰在232,403 nm.发射光谱为一宽带,峰值在424 nm附近.还发现,最佳Ce3+掺杂质量浓度为5 %.研究认为Ce3+∶YVO4荧光粉可以满足与蓝光LED复合产生自然白光的要求.  相似文献   

17.
以Eu2O3(99.99%),CaCl2.6H20(AR),Na2WO4.2H2O(AR)为原料,水热合成Eu3+掺杂的CaWO4系列荧光粉,通过XRD、荧光光谱等表征手段,考察荧光粉的晶体结构和三价铕离子的掺杂量对荧光粉体发光性能的影响.研究表明:由于Eu3+半径与Ca2+半径大小相当,Eu3+掺杂的CaWO4荧光粉并未引起其晶体结构的较大变化;在395 nm激发下,荧光粉Ca1-xWO4∶xEu3+的基质CaWO4由于WO42-内部的电荷跃迁产生主峰位于464 nm附近的宽带峰,掺杂的Eu3+分别在590 nm、616 nm处出现对应于Eu3+的5D0→7F15、D0→7F2跃迁的特征发射峰.随着Eu3+浓度的增加,616 nm红光发射强度增强,当Eu3+掺杂量为0.3%时,Ca1-xWO4∶xEu3+在395 nm激发下可得到接近白光效果的荧光发射,其对应的CIE色坐标为X=0.3602,Y=0.3528.  相似文献   

18.
使用溶胶凝胶法制备MgB_4O_7及Eu3+掺杂不同物质量浓度的MgB_4O_7∶Eu~(3+)红色发光材料,对其光致发光性能进行研究.结果表明:MgB_4O_7∶Eu~(3+)在近紫外及可见光范围内属于Eu~(3+)的f-f跃迁激发峰较强,最强激发峰位于383nm.MgB_4O_7基质在近紫外光激发时存在一个宽带的发射,其在400~650nm,与Eu3+的激发峰有重叠.通过对比MgB_4O_7∶Eu~(3+)的发射光谱证明存在基质向Eu~(3+)的能量传递过程,这使得在Eu~(3+)掺杂物质量分数0.5%时就获得较高的发光强度,说明MgB4O7∶Eu~(3+)可以作为近紫外光激发的光致发光材料而应用.  相似文献   

19.
采用柠檬酸凝胶-燃烧法制备了Eu3+和Gd3+双稀土共掺杂超细BaZrO3荧光粉,利用X射线衍射、差热-热重、红外光谱、扫描电镜等方法对荧光粉的结构、组成及形貌进行了表征.结果表明,经800℃退火后得到的样品呈球形分布,为粒径100~300nm的超细立方相结构BaZrO3:Eu3+、Gd3+粉末.通过样品的激发光谱和发射光谱详细研究了Gd3+对BaZrO3:Eu3+体系中Eu3+发光性质的影响,结果表明在BaZrO3:Eu3+、Gd3+体系中Eu3+的发光强度远远强于Eu3+的单一掺杂,说明Gd3+对Eu3+发光的敏化效果十分明显.BaZrO3:Eu3+、Gd3+的最强激发峰位于465nm和395nm处,与广泛使用的蓝光LED芯片的输出波长相匹配.在近紫外和蓝光激发下,样品发射以Eu3+5 D0→7F1磁偶极跃迁为主的橙光和5 D0→7F2电偶极跃迁为主的红光.因此该法制备的超细BaZrO3:Eu3+、Gd3+粉末有望成为一种潜在的适用于蓝光LED芯片的光转换橙红光材料.  相似文献   

20.
以单晶硅太阳能电池切削产生的硅泥为原料,通过氨氮化工艺高温烧结制备了Eu~(2+)激发的直接白光荧光粉,研究了Eu~(2+)掺杂浓度对荧光粉发光性能的影响.物相分析结果显示,所合成的荧光粉为混合物,主要晶相为Ca_2SiO_4、CaSiO_3和Ca_2Si_5N_8.通过分析荧光光谱,发现荧光粉的有效激发范围为300~450 nm.在370nm近紫外光激发下,荧光粉中主要存在两个发光中心,分别位于470 nm和570 nm,发光颜色趋近于白光,色坐标为(0.327 5,0.386 6),色温为5 705 K(5 431.85℃).通过改变Eu离子掺杂浓度发现:荧光粉发光强度先增大后减小,最佳Eu~(2+)掺杂量为10.0 mol%;超过最佳掺杂浓度,由于离子间的相互作用导致浓度淬灭.通过单一荧光粉配合紫外芯片激发可直接获得白光输出.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号