首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 51 毫秒
1.
2.
3.
I J Jackson  P Schofield  B Hogan 《Nature》1985,317(6039):745-748
  相似文献   

4.
A common feature of Drosophila homoeo box genes appears to be their spatially restricted expression patterns during morphogenesis. Using Northern blot analysis and in situ hybridization to mouse tissue sections, the spatially restricted expression of a newly identified mouse homoeo box locus, Hox-3, within the central nervous system of newborn and adult mice has been demonstrated.  相似文献   

5.
6.
Homoeotic genes in the bithorax and Antennapedia complexes of Drosophila melanogaster appear to specify the developmental fate of segments of the fly. Some of these genes (Ultrabithorax, Antennapedia and fushi tarazu) share homology due to their conservation of a 'homoeo domain'1,2 consisting of 60 amino acids. Cross-hybridization and cloning experiments show that the homoeo domain is conserved in a frog (Xenopus laevis) gene expressed in early development and may also be present in earthworm, beetle, chicken, mouse and human genomes. The extreme conservation found in the amino acid sequences between the Drosophila and Xenopus domains suggests that the domain has a vital function in the control of early development. Here we report the results of a search made in the Dayhoff sequence bank, which reveals a lesser but apparently significant homology between the homoeo domain and the amino acids coded from parts of the a 1 and alpha 2 mating type genes of the yeast Saccharomyces cerevisiae.  相似文献   

7.
8.
9.
In mammals, testis determination is under the control of the testis-determining factor borne by the Y chromosome. SRY, a gene cloned from the sex-determining region of the human Y chromosome, has been equated with the testis-determining factor in man and mouse. We have used a human SRY probe to identify and clone related genes from the Y chromosome of two marsupial species. Comparisons of eutherian and metatherian Y-located SRY sequences suggest rapid evolution of these genes, especially outside the region encoding the DNA-binding HMG box. The SRY homologues, together with the mouse Ube1y homologues, are the first genes to be identified on the marsupial Y chromosome.  相似文献   

10.
Chromosome 17 is unusual among the human chromosomes in many respects. It is the largest human autosome with orthology to only a single mouse chromosome, mapping entirely to the distal half of mouse chromosome 11. Chromosome 17 is rich in protein-coding genes, having the second highest gene density in the genome. It is also enriched in segmental duplications, ranking third in density among the autosomes. Here we report a finished sequence for human chromosome 17, as well as a structural comparison with the finished sequence for mouse chromosome 11, the first finished mouse chromosome. Comparison of the orthologous regions reveals striking differences. In contrast to the typical pattern seen in mammalian evolution, the human sequence has undergone extensive intrachromosomal rearrangement, whereas the mouse sequence has been remarkably stable. Moreover, although the human sequence has a high density of segmental duplication, the mouse sequence has a very low density. Notably, these segmental duplications correspond closely to the sites of structural rearrangement, demonstrating a link between duplication and rearrangement. Examination of the main classes of duplicated segments provides insight into the dynamics underlying expansion of chromosome-specific, low-copy repeats in the human genome.  相似文献   

11.
Characterization of a murine gene expressed from the inactive X chromosome   总被引:43,自引:0,他引:43  
In mammals, equal dosage of gene products encoded by the X chromosome in male and female cells is achieved by X inactivation. Although X-chromosome inactivation represents the most extensive example known of long range cis gene regulation, the mechanism by which thousands of genes on only one of a pair of identical chromosomes are turned off is poorly understood. We have recently identified a human gene (XIST) exclusively expressed from the inactive X chromosome. Here we report the isolation and characterization of its murine homologue (Xist) which localizes to the mouse X inactivation centre region and is the first murine gene found to be expressed from the inactive X chromosome. Nucleotide sequence analysis indicates that Xist may be associated with a protein product. The similar map positions and expression patterns for Xist in mouse and man suggest that this gene may have a role in X inactivation.  相似文献   

12.
Now that the mouse and human genome sequences are complete, biologists need systematic approaches to determine the function of each gene. A powerful way to discover gene function is to determine the consequence of mutations in living organisms. Large-scale production of mouse mutations with the point mutagen N-ethyl-N-nitrosourea (ENU) is a key strategy for analysing the human genome because mouse mutants will reveal functions unique to mammals, and many may model human diseases. To examine genes conserved between human and mouse, we performed a recessive ENU mutagenesis screen that uses a balancer chromosome, inversion chromosome 11 (refs 4, 5). Initially identified in the fruitfly, balancer chromosomes are valuable genetic tools that allow the easy isolation of mutations on selected chromosomes. Here we show the isolation of 230 new recessive mouse mutations, 88 of which are on chromosome 11. This genetic strategy efficiently generates and maps mutations on a single chromosome, even as mutations throughout the genome are discovered. The mutations reveal new defects in haematopoiesis, craniofacial and cardiovascular development, and fertility.  相似文献   

13.
Genetic analysis of autoimmune type 1 diabetes mellitus in mice.   总被引:57,自引:0,他引:57  
Two genes, Idd-3 and Idd-4, that influence the onset of autoimmune type 1 diabetes in the nonobese diabetic mouse have been located on chromosomes 3 and 11, outside the chromosome 17 major histocompatibility complex. A genetic map of the mouse genome, analysed using the polymerase chain reaction, has been assembled specifically for the study. On the basis of comparative maps of the mouse and human genomes, the homologue of Idd-3 may reside on human chromosomes 1 or 4 and Idd-4 on chromosome 17.  相似文献   

14.
A DNA probe from a human Y chromosome-derived cosmid detects a single-copy genomic DNA fragment which can appear in different allelic forms shared by both sex chromosomes. Variants at this DNA locus show an autosomal pattern of inheritance, undergo recombination with sexual phenotype and can therefore be described as 'pseudoautosomal'. Another probe from the same cosmid detects a sequence repeated 15-20 times per haploid genome. These repeats also appear pseudoautosomal and map exclusively to the short-arm terminal region of each sex chromosome.  相似文献   

15.
S J Gaunt  J R Miller  D J Powell  D Duboule 《Nature》1986,324(6098):662-664
Pattern formation in animal development requires that genes be expressed differentially according to position in the sheets of cells that make up the early embryo. The homoeobox-containing genes of Drosophila are control genes active both in the establishment of a segmentation pattern and in the specification of segment identity. In situ hybridization experiments confirm that these genes are expressed in a segmentally-restricted manner and that their expression presages morphological differentiation of segmental structures. Homoeobox genes have recently been isolated from the mouse and have been shown to be expressed during mouse development. Using in situ hybridization, we show here that expression of the mouse homoeobox gene Mo-10 (ref. 7) is spatially restricted in the developing embryo and that localization of expression is already evident within the germ layers before their morphological differentiation. These findings support the suggestion that the homoeobox genes of mammals, like those of Drosophila, may be important in pattern formation.  相似文献   

16.
The chromosomes 1, 3, 5, 6, 7, 10 and 12 of rice field eel (Monopterus albus Zuiew) have been microdissected successfully from meiosis Ⅰ diakinesis spreads by using glass microneedle under an inverted microscope. And the DOP-PCR products of the single chromosome dotted on the nylon membrane as “specific chromosomal DNA pool”, have been hybridized with 6 probes to map these genes. The mapping results show that Zfa has been mapped to chromosome 1, rDNA to chromosomes 3 and 7, both Gh and Pdegg to chromosome 10, Hsl to chromosome 5 and Hox genes have been detected on chromosomes 1, 3, 6 and 10 meantime. It has initiatively been suggested that chromosome 10 of rice field eel might possess the commom conserved synteny to that on chromosome 17 of human, chromosome 11 of mouse, chromosome 12 of pig and chromosome 19 of bovine. And so chromosome 3 of rice field eel might also contain the commom conserved synteny to that on chromosome 2 of zebrafish. Our study is an attempt to establish a new and feasible method to advance the study of gene mapping and chromosome evolution in fish, and also to provide a new idea to distinguish each chromosome on the base of molecular markers for fish.  相似文献   

17.
R J J?ger  M Anvret  K Hall  G Scherer 《Nature》1990,348(6300):452-454
The primary decision about male or female sexual development of the human embryo depends on the presence of the Y chromosome, more specifically on a gene on the Y chromosome encoding a testis-determining factor, TDF. The human sex-determining region has been delimited to a 35-kilobase interval near the Y pseudoautosomal boundary. In this region there is a candidate gene for TDF, termed SRY, which is conserved and specific to the Y chromosome in all mammals tested. The corresponding gene from the mouse Y chromosome is deleted in a line of XY female mutant mice, and is expressed at the expected stage during male gonadal development. We have now identified a mutation in SRY in one out of 12 sex-inversed XY females with gonadal dysgenesis who do not lack large segments of the short arm of the Y chromosome. The four-nucleotide deletion occurs in a sequence of SRY encoding a conserved DNA-binding motif and results in a frame shift presumably leading to a non-functional protein. The mutation occurred de novo, because the father of the sporadic XY female that bears it has the normal sequence at the corresponding position. These results provide strong evidence for SRY being TDF.  相似文献   

18.
19.
20.
A physical map of the mouse genome   总被引:1,自引:0,他引:1  
A physical map of a genome is an essential guide for navigation, allowing the location of any gene or other landmark in the chromosomal DNA. We have constructed a physical map of the mouse genome that contains 296 contigs of overlapping bacterial clones and 16,992 unique markers. The mouse contigs were aligned to the human genome sequence on the basis of 51,486 homology matches, thus enabling use of the conserved synteny (correspondence between chromosome blocks) of the two genomes to accelerate construction of the mouse map. The map provides a framework for assembly of whole-genome shotgun sequence data, and a tile path of clones for generation of the reference sequence. Definition of the human-mouse alignment at this level of resolution enables identification of a mouse clone that corresponds to almost any position in the human genome. The human sequence may be used to facilitate construction of other mammalian genome maps using the same strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号