首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 154 毫秒
1.
由空气动力学套件产生的负升力对提高大学生方程式赛车的赛道表现有着重要作用,赛车尾翼是产生负升力的主要部件之一。使用有限元方法(computational fluid dynamics)对大学生方程式赛车尾翼的负升力特性进行研究。结果表明,在一定范围内尾翼产生的负升力数值随主翼攻角的增大而增大;大学生方程式整车流场中影响尾翼负升力的外界因素主要是车身遮挡物与前翼下游上升气流,尾翼的最大负升力损失达到40%;对尾翼分区域设计不同主翼攻角值有效提升了赛车尾翼产生负升力的能力。  相似文献   

2.
针对大学生方程式赛车外形的设计要求及空气动力学套件的结构特点,采用ANSYS软件对赛车流场进行分析并优化了动力学套件结构。首先根据赛车整车外形及空气动力学套件各个部分,如前翼、侧翼及尾翼的设计参数建立CATIA数学模型,再利用ANSYS对其空气动力学套件各部分及整车进行流场分析,最后用分析结果来优化原设计参数,使赛车整体空气动力学性能达到较好的水平。通过不同车速仿真分析表明,车速在30m/s时,优化后的空气动力学套件能使整车的下压力由原来的40N提高到1 590N,而前轮气动阻力能减少约41.6%,表明赛车在高速行驶过程中具有更为良好的操控性能和空气动力学特性。  相似文献   

3.
FSAE赛车的空气动力学套件及各套件的交互作用对赛车的设计和性能至关重要。传统空气动力学套件的设计通过对单个组件确定造型,对其分析后修改和优化,造型单一且较少考虑各套件间的交互作用。文章基于雷诺平均湍流方程并结合Realizable k-ε湍流模型,建立三维FSAE赛车外流场计算模型,运用正交实验设计方法,考虑各套件间的交互作用,分析了不同套件组合对赛车空气动力学性能的影响。结果表明:负升力的增加也会伴随空气阻力减小,存在优化设计方案;各组件对整车空气动力学性能的影响程度为定风翼前鼻翼扩散器;套件间配合对提高整车空气动力学性能至关重要,应尽量使各套件间气流顺畅过渡。通过实车试验测试,进一步验证了该分析模型及结论的正确性。  相似文献   

4.
在赛车领域,空气动力学研究已经成为各项赛事以及车队之间竞争的焦点。文中通过对G03C赛车进行整车空气动力学分析,找出整车造型对空气动力学的影响因素,并根据空气动力学原理设计了一套相匹配的空气动力学套件,包括鼻翼、尾翼及扩散器。对比改装前后赛车的空气力学性能,结果表明,安装空气动力学套件后,产生一定的下压力使得赛车的高速稳定性能得到提升。  相似文献   

5.
汽车的空气动力学特性被越来越多的人所重视,对汽车的操控性与稳定性都产生影响。该文利用Catia软件对设计的空气动力学套件进行三维模型的建立,并与赛车装配,利用有限元分析软件ANSYS进行流场分析,得出赛车的流场特性,为其改进设计提供依据。空气动力学在赛车领域的应用是非常广泛的,我们将此应用于大学生方程式赛车上面,给赛车加装空气动力学套件,使其的操纵性能得以提升。  相似文献   

6.
针对武汉科技大学FSC赤骥车队设计的赛车,进行空气动力学套件的设计。首先进行定风翼及扩散器的设计和建模,并利用FLUENT软件对定风翼进行空气动力学仿真优化;然后把空气动力学套件安装在赛车上,建立整车模型,进行常用工况下整车的空气动力学仿真,分析加装空气动力学套件对赛车高速稳定性及转弯性能的影响。结果表明,加装空气动力学套件后,赛车的高速稳定性和转弯性能均有明显提升。  相似文献   

7.
可调尾翼控制系统是一项提高赛车弯道操控性和直道极速能力的最新技术。文章在赛车尾翼基础上基于比赛工况确定尾翼攻角组合,根据尾翼运动行程实现执行机构设计;基于嵌入式技术,实现可调尾翼控制系统的软硬件开发,通过车载传感器获取不同工况下车速及制动状态信息;通过控制器计算及逻辑判断,驱动舵机工作,使执行机构带动尾翼实现不同尾翼攻角,达到提升空气动力学性能、实现尾翼智能可调的目的。通过系统样机试验测试表明,根据给定工况的信号变化,系统样机能顺利实现3种尾翼攻角组合变换。FSAE赛车可调尾翼控制系统样机的开发具有一定的应用价值。  相似文献   

8.
传统优化方法凭借对轿车外流场的分析经验来控制尾翼优化变量并等间隔枚举,通过比较得出最优方案,工作量大且可能遗漏关键样本点.本文以尾翼的翼型及相对车身的位置参数(尾翼攻角、垂向位置和纵向位置)为设计变量,基于DOE试验设计方法确定样本设计变量组合,利用数值模拟方法计算出所确定样本点轿车的气动升力和阻力.通过方差分析以及响应曲面法以使轿车获得最大下压力与阻力比值为优化目标,得到各设计变量的影响因数和最优水平.结果表明:基于试验设计的优化过程更加高效地优化了轿车尾翼的空气动力学性能,具有实际工程应用价值.  相似文献   

9.
以大学生方程式赛车为研究对象,采用非稳态来流仿真方法对其过弯时的气动性能展开了研究。采用非稳态来流方法,将仿真来流速度设置为随时间变化的场函数以精准模拟入弯情形,并与稳态来流的弯道仿真结果进行了对比;配合仿真结果,在道路试验中使用表面压力测量对扩散器和尾翼的局部流场进行了量化。结果表明:赛车前轮以及前翼在非稳态过弯时会对下游底部流场产生较大影响,底部扩散器的非稳态气动鲁棒性将是整车气动设计的重点。  相似文献   

10.
以大学生方程式赛车为对象展开圈速仿真研究,综合考虑离地间隙和偏航角与阻力系数、升力系数之间的关系,采用试验和数值仿真相结合的方法,研究行驶中车身姿态变化对方程式赛车气动特性的影响。首先,对现有车辆气动模型进行修正,再利用龙格库塔方法对速度积分进行圈速仿真,并与商业软件Optimumlap的仿真结果进行对比。结果表明,基于气动参数与车身姿态耦合关系建立的模型对于圈速仿真有着更为准确的描述;忽略气动变化影响会高估过弯时轮胎的抓地力,且在不考虑载荷转移的同时低估赛车的加速性能,从而高估阻力对于圈速的影响;考虑载荷转移的模型,不同赛道对阻力的敏感程度不同。为改进赛车空气动力学设计提供参考。  相似文献   

11.
以大学生方程式赛车为研究对象,采用横摆模型法对不同侧风下的赛车气动特性进行了CFD仿真和试验研究,得到了相应的气动力系数,并对不同侧风下流场中速度以及压力的分布进行了分析,探究了气动力系数和尾部流场的差异.结果表明,赛车的阻力系数和侧向力系数随横摆角的增大而增大,而升力系数并不随横摆角线性变化.赛车的下压力主要由前后翼提供,随着横摆角的增大,后翼所提供的下压力逐渐减小,而底板所提供的下压力则逐渐增大.车身所提供的阻力随横摆角的变化更为敏感.不同横摆角下,赛车尾部的涡流分布存在较大差异.   相似文献   

12.
后翼上反串置翼无人机气动特性研究   总被引:2,自引:1,他引:1  
针对未来机体占用空间小并且具有高机动性飞行器的设计需求,提出后翼具有上反角的串置翼布局.采用N-S控制方程的有限体积法离散格式,选取剪切应力运输(SST)k-ω两方程湍流模型对以后翼上反角为变量的4组模型进行数值模拟分析.通过理论分析与验证机实验相结合的方法,研究了前后机翼间气动干扰特性以及后翼上反对飞行性能的影响.研究结果表明后翼上反角可避免平飞时前翼尾流对后翼的冲击,保证小攻角时的巡航稳定性.同时分析了由前后翼间持续相互干扰作用造成的不良影响,并提出了解决方案.研究论证了串置翼后翼上反能够替代垂尾起到横航向安定作用,并且通过取消垂直安定面降低了飞行器结构重量和浸润面积产生的阻力.   相似文献   

13.
大学生方程式赛车轮圈的轻量化设计对减轻簧下质量,提高赛车性能有着重要意义。采用有限元法研究赛车碳纤维轮圈的轻量化设计,对轮辐结构形式进行探究以寻求更高刚度,在多工况条件下对设计方案铺层结构进行多步优化以实现质量的减轻。分析表明,具有斜辐板设计的轮圈比直辐板轮圈有着更好的刚性;碳纤维铺层厚度分区优化是实现轻量化的有效方法,最终设计较原铝合金轮圈质量减轻56%;对碳纤维轮圈的结构优化使材料的最大应力和应变减小,整体刚性提高35%,失效因子降低8.1%。  相似文献   

14.
某跑车尾翼外形变化对气动升力影响的仿真分析   总被引:2,自引:1,他引:1  
为研究汽车行驶时,气动升力随着车速的提高,对汽车的操纵稳定性和动力性的影响,研究气动升力的附加装置.以一跑车模型的尾翼为基础,采用一种修正湍流模型的数值计算方法,探讨了外形、攻角、翼面凹坑以及支架形式对尾翼表现的影响.结果表明:后负升力翼产生的负升力与外形和支架形式有很大关系,且随着攻角的增大而增加,而翼面凹坑能起到增加负升力的作用.  相似文献   

15.
为进一步揭示蜻蜓翼在被动的柔性变形和串列双翼柔性干涉作用下对气流的影响机制,本文基于STAR-CCM+软件,采用流固耦合方法对Navier-Stokes方程进行数值求解。研究了杨氏模量为3 800 MPa、泊松比为0.25时,蜻蜓柔性复翼的变形及其气动特性响应规律。研究表明:蜻蜓翼保持正向高置差气动布局均会带来相似且有益的影响。迎角5°时,1.2 mm的高置布局相比低置气动布局的升力系数提升了5.2%,当迎角增大到25°时,差值达到19%。双翼干涉效应下,前翼的气动特性会得到明显的提升,后翼虽会损失一定的气动力,但总体而言,动态干涉是有益的。从双翼气流分离下诱导的后缘涡强度来看,后翼的涡要明显强于前翼。9 m/s以后,蜻蜓滑翔时由前翼承担主要载荷的方式缓慢过渡到后翼,而且后翼翼梢处受载较明显,其最大变形达到16 mm;扭转变形方面:速度一定时,随着滑翔时失速迎角增大,后翼的动态弯扭变形明显强于前翼,验证了蜻蜓翼大迎角下利用后翼机动滑翔的观点。  相似文献   

16.
为了提高赛车的加速性能,利用理论公式、赛道特点和赛手使用情况,设计出合适的传动比。根据后桥的安装方式,利用CATIA对差速器固定装置三维建模,使用ansys软件作为优化工具,定义材料属性,划分网格,确定约束条件。  相似文献   

17.
针对机翼前、后缘控制面对鸭翼 前掠翼布局飞行器静气动弹性的影响,通过CFD/CSD松耦合计算方法求解三维不定常N-S方程和线弹性静力学方程,得到了前、后缘控制面单独偏转和协同偏转状态下弹性前掠翼的气动特性和弹性特性。研究结果表明:弹性机翼相比于刚性机翼有更好的升力特性和大迎角失速特性;控制面偏转方式的变化也会对气动特性和弹性特性产生影响,当控制面单独偏转时,前缘控制面下偏和后缘控制面下偏均能增大弹性机翼的升力系数,最大升力系数增量分别为2.60%和8.69%;当控制面协同偏转时,同向偏转时的升力增幅比单独偏转时更大,最大升力增量为11.96%,反向偏转的升阻比特性较好,并可在小迎角范围内降低弹性变形和扭转。  相似文献   

18.
为延长飞行汽车的飞行时间及实现飞行汽车可以在空中飞行模式与陆地行驶模式下正常工作,在根据升力公式对飞行汽车机翼进行设计选型后,对机翼折叠、回收机构进行设计并基于复数矢量法建立机翼折叠、回收机构运动学模型,使用MATLAB分析计算了机构关键杆件的角位移、角速度、角加速度变化情况,并用Adams对机构进行运动仿真分析。分析结果表明:机翼折叠机构与回收机构的角位移、角速度、角加速度图像均未出现激增或骤降,机构结构设计合理,可实现平滑稳定运动,运动特性良好。其中,通过控制折叠机构驱动杆件由83.25°偏转至116.75°实现折叠外翼90°的偏转。通过控制回收机构驱动滑块位移516.6 mm实现机翼90°的展开。最终在30 s内完成机翼折叠及回收作业。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号