首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
图G的L(2,1)-标号是从顶点集V(G)到非负整数集的一个函数f,且使得当d(u,v)=1时,有|f(u)-f(v)|≥2;当d(u,v)=2时,有|f(u)-f(v)|≥1.不妨设最小标号为0.那么,图G的L(2,1)-标号数λ(G)是G的所有L(2,1)-标号下的跨度max{f(v);v∈V(G)}的最小值.定义了点接拟梯子,并完全确定了点接拟梯子的L(2,1)-标号数.  相似文献   

2.
图G的一个L(2,1)-标号就是从顶点集V(G)到非负整数集的一个函数f,使得d(u,v)=1时,有|f(u)-f(v)|≥1;当d(u,v)=2时,有|f(u)-f(v)|≥1,其中u,v是图G的顶点.不妨设最小标号为.那么,图G的L(1,1)-标号数λ(G)是是G的所有L(1,1)-标号下的跨度max{f(v);v∈V(G)}的最小数.完全确定了点接拟梯子的L(1,1)-标号数.  相似文献   

3.
一个图G的L(2,1,1)-标号是指从顶点集V(G)到非负整数集的一个映射f,且使得:当d(u,v)=1时,|f(u)-f(v)|≥2;当d(u,v)=2或3时,|f(u)-f(v)|≥1.不妨假设设最小的标号为0.则,G的L(2,1,1)-标号数λ(G)是G的所有L(2,1,1)-标号下的跨度max{f(v);v∈V(G)}的最小值.完全确定了点接拟梯子的L(2,1,1)-标号数.  相似文献   

4.
图G的一个L(2,1)-标号就是从顶点集V(G)到非负整数集的一个函数f,使得d(u,v)=1时,有|f(u)-f(v)| ≥2;当d(u,v)=2时,有|f(u)-f(v)|≥1,其中u,v是图G的顶点.不妨设最小标号为0.那么,图G的L(2,1)-标号数λ(G)是G的所有L(2,1)-标号下的跨度max{f(v);v ∈ V(G)}的最小数.本文定义了拟梯子,并完全确定了拟梯子的L(2,1)-标号数.  相似文献   

5.
图G的一个L(2,1)标号就是从顶点集V(G)到非负整数集的一个函数f,使得d(u,v)=1时,有|f(u)-f(v)| ≥2;当d(u,v)=2时,有|f(u)-f(v)|≥1,其中u,v是图G的顶点.不妨设最小标号为.那么,图G的L(2,1)-标号数λ(G)是G的所有L(2,1)标号下的跨度max {f(v);v∈V(G)}的最小数.本文定义了拟m(o)bius梯子,并完全确定了拟m(o)bius梯子的L(2,1)标号数.  相似文献   

6.
图G的一个L(2,1)标号就是从顶点集V(G)到非负整数集的一个函数f,使得d(u,v)=1时,有|f(u)-f(v)|≥2;当d(u,v)=2时,有|f(u)-f(v)|≥1,其中u,v是图G的顶点.不妨设最小标号为.那么,图G的L(2,1)-标号数λ(G)是G的所有L(2,1)标号下的跨度max{f(v);v∈V(G)}的最小数.本文定义了拟mbius梯子,并完全确定了拟mbius梯子的L(2,1)标号数.  相似文献   

7.
图G的一个L(1,1,1)-标号是从顶点集V(G)到非负整数集的一个映射f,且当距离d(u,v)=1,2,3时,均有|f(u)-f(v)|≥1;其中,u,v是图G的顶点.不妨设0为最小标号,则称图G的所有L(1,1,1)-标号中的最大跨度的f(v)最小数为图G的L(1,1,1)-标号数,记为λ_(1,1,1)(G).给出了拟Mobius梯子的L(1,1,1)-标号数的确切值或上下界.  相似文献   

8.
图G的一个L(2,1)-标号就是从顶点集到非负整数集的一个函数f,使得d(u,v)=1时,有|f(u)-f(v)|≥1;当d(u,v)=2时,有|f(u)-f(v)|≥1,其中u,v是图G的顶点.不妨设最小标号为0.那么,图G的L(1,1)-标号数λ(G)是是G的所有L(1,1)-标号下的跨度max{f(v);v∈V(G)}的最小数.完全确定了拟梯子的L(1,1)-标号数.  相似文献   

9.
连通图G的多级距离标号(电台标号)是顶点集V(G)到非负整数集{0,1,2,…}的一个映射f,使得对于任意的u,v∈V(G)满足:f(u)-f(v)≥diam(G)+1-d(u,v),其中diam(G)是图G的直径,d(u,v)表示两点u,v之间的距离.映射f的跨度是指max u,v∈V(G){f(u)-f(v)}.图G的多级距离数是指图G的所有多级距离标号的最小跨度.图G的立方是由图G通过在距离不超过3的任两点间添加一条连边构成.本文给出了立方路的多级距离数.  相似文献   

10.
设p,q为两个非负整数,一个图G的L(p,q)-标号是一个从G的顶点集V(G)到一个非负整数集的映射f,使得对于G中的任意两个顶点u,v,当d(u,v)=1时,|f(u)-f(v)|≥p;当d(u,v)=2时,|f(u)-f(v)|≥q;根据p,q之间的关系,给出两个顶点数都是n的完全图的匹配和的L(p,q)-标号数的上界.而当q≤p≤2q时,确定了两个顶点数都是n的完全图的匹配和的L(p,q)-标号数的准确值.  相似文献   

11.
图G的L(3,2,1)-标号是指从顶点集V(G)到非负整数集Z*的一个映射f,满足:对于任意两个不同顶点u和v,若d(u,v)=i(i=1,2,3),则|f(u)-f(v)|≥4-i.若图G的一个L(3,2,1)-标号中的所有像元素都不超过整数k,则称之为图G的k-L(3,2,1)-标号.图G的L(3,2,1)标号数,记作λ3,2,1(G),是使得图G存在k-L(3,2,1)-标号的最小整数k.本文确定了完全最大度不小于4的毛毛虫树的L(3,2,1)标号数.  相似文献   

12.
图G的L(2,1)-标号是一个从顶点集V(G)到非负整数集的函数f(x),使得若d(x,y)=1,则|f(x)-f(y)|≥2;若d(x,y)=2,则|f(x)-f(y)|≥1.图G的L(2,1)-标号数λ(G)是使得G有max{f(v):v∈V(G)}=k的L(2,1)-标号中的最小数k.本文将L(2,1)-标号问题推广到更一般的情形即L(d1,d2,d3)一标号问题.并得出了一般图和平面图的λd1,d2,d3(G)的上界.  相似文献   

13.
图G的L(2,1)-标号是一个从顶点集V(G)到非负整数集的函数f(x),使得若d(x,y)=1,则|f(x)-f(y)|≥2;若d(x,y)=2,则|f(x)-f(y)≥1.图G的L(2,1)-标号数A(G)是使得G有max{f(v):v∈V(G)|=k的L(2,1)-标号中的最小数k.将L(2,1)-标号问题推广到更一般的情形即L(3,2,1)-标号问题,并得出了全图、块图的L(3,2,1)-标号数的上界.  相似文献   

14.
图G的L(2,1)-标号是一个从顶点集V(G)到非负整数集的函数f(x),使得若d(x,y)=1,则|f(x)-f(y)|≥2;若d(x,y)=2,则|f(x)-f(y)|≥1.图G的三(2,1)-标号数λ(G)是使得G有max{f(v):v∈V(G)}=k的L(2,1)-标号中的最小数k.该文将L(2,1)-标号问题推广到更一般的情形即L(3,2,1)-标号问题,并得出了Kneser图、高度不正则图、Halin图的λ3(G)的上界.  相似文献   

15.
图G的一个(1,1)-全标号就是从点集和边集到非负整数集的一个函数f,且使得:任两个相邻顶点标号不同,任两个相邻边标号不同,以及任两个关联的点和边标号也不同.研究了拟梯子和手镯图的(1,1)-全标号,并完全确定了拟梯子的(1,1)-全标号数.  相似文献   

16.
令G=(V(G),E(G))为一简单连通图,V(G)和E(G)分别是图G的顶点集和边集.一个顶点标号函数f:V(G)→Z2诱导出一个边标号函数f*:E(G)→Z2,其中?v1 v2∈E(G),有f*(v1v2)=f(v1)+f(v2).当标1和标0的顶点数相差m(m<|V(G)|)时,标号为1和0的边数差的集合称为图G...  相似文献   

17.
一个图C的(ρ,1)-全标号是一个映射f:V(C)∪ E(G)→{0,1…κ},使得:C的任两个相邻的顶点得到不同的整数;C的任两个相邻的边得到不同的整数;一个点和它的邻边得到的整数至少相差ρ.(ρ,1)-全标号的跨度是指两个标号差的最大值.图G的(ρ,1)-全标号的最小跨度叫(ρ,1)-全标号数,记作λTp(G).给出了几类圈构造图的(ρ,1)-全标号.  相似文献   

18.
令G=(V(G),E(G))是具有n个顶点、m条边的连通简单图.称一个双射f:E(G)→{1,2,…,|E(G)|}为图G的一个局部反魔幻标号,如果f满足对于G中任意两个相邻的顶点u和v都有w(u)≠w(v),其中w(u)=∑e∈E(u)f(e),E(u)是与点u相关联的边的集合.若对图G的顶点v着颜色w(v),则图G...  相似文献   

19.
图G的顶点集到非负整数集的一个映射f满足:对任意的x,y∈V(G),当dG(x,y)=1时,有|f(x)-f(y)|≥d;当dG(x,y)=2时,有|f(x)-f(y)|≥1。图的一个k—L(d,1)-标号是指图的一个标号L(d,1)使得min{f(v)|v∈V(G)}=k,标号数简记为λd(G)。研究了广义的Petersen图的标号L(d,1),给出一个特殊的标号方法,得到了广义的Petersen图的标号数λd(G)≤4d。  相似文献   

20.
图G=(V,E)的标号是一个双射?:E→{1,2,3,…,|E|}.G的任一顶点u,其标号和f_?(u)=∑_(e∈E(u))?(e),这里E(u)是与顶点u关联的所有边的集合.1990年Hartsfield和Ringel提出了反魔幻图的概念.如果存在G的一个标号?,使得任意两个不同的顶点u,v有不同的标号和,即f?(u)≠f?(v).证明了联图C_n∨mC_n是反魔幻图.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号