首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 283 毫秒
1.
Hemoglobin deficit (hbd) mice carry a spontaneous mutation that impairs erythroid iron assimilation but does not cause other defects. Normal delivery of iron to developing erythroid precursors is highly dependent on the transferrin cycle. Through genetic mapping and complementation experiments, we show that the hbd mutation is an in-frame deletion of a conserved exon of the mouse gene Sec15l1, encoding one of two Sec15 proteins implicated in the mammalian exocyst complex. Sec15l1 is linked to the transferrin cycle through its interaction with Rab11, a GTPase involved in vesicular trafficking. We propose that inactivation of Sec15l1 alters recycling of transferrin cycle endosomes and increases the release of transferrin receptor exocytic vesicles. This in turn decreases erythroid iron uptake. Determining the molecular basis of the hbd phenotype provides new insight into the intricate mechanisms necessary for normal erythroid iron uptake and the function of a mammalian exocyst protein.  相似文献   

2.
A number of studies have suggested that the active derivative of vitamin A, retinoic acid (RA), may be important for early development of mammalian embryos. Severe vitamin A deprivation in rodents results in maternal infertility, precluding a thorough investigation of the role of RA during embryogenesis. Here we show that production of RA by the retinaldehyde dehydrogenase-2 (Raldh2) enzyme is required for mouse embryo survival and early morphogenesis. Raldh2 is an NAD-dependent aldehyde dehydrogenase with high substrate specificity for retinaldehyde. Its pattern of expression during mouse development has suggested that it may be responsible for embryonic RA synthesis. We generated a targeted disruption of the mouse Raldh2 gene and found that Raldh2-/- embryos, which die at midgestation without undergoing axial rotation (body turning), exhibit shortening along the anterioposterior axis and do not form limb buds. Their heart consists of a single, medial, dilated cavity. Their frontonasal region is truncated and their otocysts are severely reduced. These defects result from a block in embryonic RA synthesis, as shown by the lack of activity of RA-responsive transgenes, the altered expression of an RA-target homeobox gene and the near full rescue of the mutant phenotype by maternal RA administration. Our data establish that RA synthesized by the post-implantation mammalian embryo is an essential developmental hormone whose lack leads to early embryo death.  相似文献   

3.
In all eukaryotic cells, the cytosolic concentration of calcium ions ([Ca2+]c) is tightly controlled by complex interactions among transporters, pumps, channels and binding proteins. Finely tuned changes in [Ca2+]c modulate a variety of intracellular functions, and disruption of Ca2+ handling leads to cell death. Here we review the human genetic diseases associated with perturbations in the Ca2+ signaling machinery. Despite the importance of Ca2+ in physiology and pathology, the number of known genetic diseases that can be attributed to defects in proteins directly involved in Ca2+ homeostasis is limited to few examples, which will be discussed. This paucity in contrast with the wide molecular repertoire may depend on the extreme severity of the phenotype (leading to death in utero) or, conversely, on functional compensation due to redundancy. In the latter case, it stands to reason that other genetic defects in calcium signaling have yet to be identified owing to their subtle phenotype.  相似文献   

4.
The evolutionarily conserved planar cell polarity (PCP) pathway (or noncanonical Wnt pathway) drives several important cellular processes, including epithelial cell polarization, cell migration and mitotic spindle orientation. In vertebrates, PCP genes have a vital role in polarized convergent extension movements during gastrulation and neurulation. Here we show that mice with mutations in genes involved in Bardet-Biedl syndrome (BBS), a disorder associated with ciliary dysfunction, share phenotypes with PCP mutants including open eyelids, neural tube defects and disrupted cochlear stereociliary bundles. Furthermore, we identify genetic interactions between BBS genes and a PCP gene in both mouse (Ltap, also called Vangl2) and zebrafish (vangl2). In zebrafish, the augmented phenotype results from enhanced defective convergent extension movements. We also show that Vangl2 localizes to the basal body and axoneme of ciliated cells, a pattern reminiscent of that of the BBS proteins. These data suggest that cilia are intrinsically involved in PCP processes.  相似文献   

5.
Impaired insulin action is a key feature of type 2 diabetes and is also found, to a more extreme degree, in familial syndromes of insulin resistance. Although inherited susceptibility to insulin resistance may involve the interplay of several genetic loci, no clear examples of interactions among genes have yet been reported. Here we describe a family in which five individuals with severe insulin resistance, but no unaffected family members, were doubly [corrected] heterozygous with respect to frameshift/premature stop mutations in two unlinked genes, PPARG and PPP1R3A these encode peroxisome proliferator activated receptor gamma, which is highly expressed in adipocytes, and protein phosphatase 1, regulatory subunit 3, the muscle-specific regulatory subunit of protein phosphatase 1, which are centrally involved in the regulation of carbohydrate and lipid metabolism, respectively. That mutant molecules primarily involved in either carbohydrate or lipid metabolism can combine to produce a phenotype of extreme insulin resistance provides a model of interactions among genes that may underlie common human metabolic disorders such as type 2 diabetes.  相似文献   

6.
7.
To search for sequence variants conferring risk of nonmedullary thyroid cancer, we focused our analysis on 22 SNPs with a P < 5 × 10(-8) in a genome-wide association study on levels of thyroid stimulating hormone (TSH) in 27,758 Icelanders. Of those, rs965513 has previously been shown to associate with thyroid cancer. The remaining 21 SNPs were genotyped in 561 Icelandic individuals with thyroid cancer (cases) and up to 40,013 controls. Variants suggestively associated with thyroid cancer (P < 0.05) were genotyped in an additional 595 non-Icelandic cases and 2,604 controls. After combining the results, three variants were shown to associate with thyroid cancer: rs966423 on 2q35 (OR = 1.34; P(combined) = 1.3 × 10(-9)), rs2439302 on 8p12 (OR = 1.36; P(combined) = 2.0 × 10(-9)) and rs116909374 on 14q13.3 (OR = 2.09; P(combined) = 4.6 × 10(-11)), a region previously reported to contain an uncorrelated variant conferring risk of thyroid cancer. A strong association (P = 9.1 × 10(-91)) was observed between rs2439302 on 8p12 and expression of NRG1, which encodes the signaling protein neuregulin 1, in blood.  相似文献   

8.
9.
The composite structure of the mammalian skull, which forms predominantly via intramembranous ossification, requires precise pre- and post-natal growth regulation of individual calvarial elements. Disturbances of this process frequently cause severe clinical manifestations in humans. Enhanced DNA binding by a mutant MSX2 homeodomain results in a gain of function and produces craniosynostosis in humans. Here we show that Msx2-deficient mice have defects of skull ossification and persistent calvarial foramen. This phenotype results from defective proliferation of osteoprogenitors at the osteogenic front during calvarial morphogenesis, and closely resembles that associated with human MSX2 haploinsufficiency in parietal foramina (PFM). Msx2-/- mice also have defects in endochondral bone formation. In the axial and appendicular skeleton, post-natal deficits in Pth/Pthrp receptor (Pthr) signalling and in expression of marker genes for bone differentiation indicate that Msx2 is required for both chondrogenesis and osteogenesis. Consistent with phenotypes associated with PFM, Msx2-mutant mice also display defective tooth, hair follicle and mammary gland development, and seizures, the latter accompanied by abnormal development of the cerebellum. Most Msx2-mutant phenotypes, including calvarial defects, are enhanced by genetic combination with Msx1 loss of function, indicating that Msx gene dosage can modify expression of the PFM phenotype. Our results provide a developmental basis for PFM and demonstrate that Msx2 is essential at multiple sites during organogenesis.  相似文献   

10.
Periconceptional folic acid supplementation reduces the occurrence of several human congenital malformations, including craniofacial, heart and neural tube defects. Although the underlying mechanism is unknown, there may be a maternal-to-fetal folate-transport defect or an inherent fetal biochemical disorder that is neutralized by supplementation. Previous experiments have identified a folate-binding protein (Folbp1) that functions as a membrane receptor to mediate the high-affinity internalization and delivery of folate to the cytoplasm of the cell. In vitro, this receptor facilitates the accumulation of cellular folate a thousand-fold relative to the media, suggesting that it may be essential in cytoplasmic folate delivery in vivo. The importance of an adequate intracellular folate pool for normal embryogenesis has long been recognized in humans and experimental animals. To determine whether Folbp1 is involved in maternal-to-fetal folate transport, we inactivated Folbp1 in mice. We also produced mice lacking Folbp2, another member of the folate receptor family that is GPI anchored but binds folate poorly. Folbp2-/- embryos developed normally, but Folbp1-/- embryos had severe morphogenetic abnormalities and died in utero by embryonic day (E) 10. Supplementing pregnant Folbp1+/- dams with folinic acid reversed this phenotype in nullizygous pups. Our results suggest that Folbp1 has a critical role in folate homeostasis during development, and that functional defects in the human homologue (FOLR1) of Folbp1 may contribute to similar defects in humans.  相似文献   

11.
12.
13.
Bardet-Biedl syndrome (BBS, OMIM 209900) is a genetic disorder with the primary features of obesity, pigmentary retinopathy, polydactyly, renal malformations, mental retardation and hypogenitalism. Individuals with BBS are also at increased risk for diabetes mellitus, hypertension and congenital heart disease. What was once thought to be a homogeneous autosomal recessive disorder is now known to map to at least six loci: 11q13 (BBS1), 16q21 (BBS2), 3p13 p12 (BBS3), 15q22.3 q23 (BBS4), 2q31 (BBS5) and 20p12 (BBS6). There has been considerable interest in identifying the genes that underlie BBS, because some components of the phenotype are common. Cases of BBS mapping ro BBS6 are caused by mutations in MKKS; mutations in this gene also cause McKusick-Kaufman syndrome (hydrometrocolpos, post-axial polydactyly and congenital heart defects). In addition, we recently used positional cloning to identify the genes underlying BBS2 (ref. 16) and BBS4 (ref. 17). The BBS6 protein has similarity to a Thermoplasma acidophilum chaperonin, whereas BBS2 and BBS4 have no significant similarity to chaperonins. It has recently been suggested that three mutated alleles (two at one locus, and a third at a second locus) may be required for manifestation of BBS (triallelic inheritance). Here we report the identification of the gene BBS1 and show that a missense mutation of this gene is a frequent cause of BBS. In addition, we provide data showing that this common mutation is not involved in triallelic inheritance.  相似文献   

14.
Fraser syndrome is a recessive, multisystem disorder presenting with cryptophthalmos, syndactyly and renal defects and associated with loss-of-function mutations of the extracellular matrix protein FRAS1. Fras1 mutant mice have a blebbed phenotype characterized by intrauterine epithelial fragility generating serous and, later, hemorrhagic blisters. The myelencephalic blebs (my) strain has a similar phenotype. We mapped my to Frem2, a gene related to Fras1 and Frem1, and showed that a Frem2 gene-trap mutation was allelic to my. Expression of Frem2 in adult kidneys correlated with cyst formation in my homozygotes, indicating that the gene is required for maintaining the differentiated state of renal epithelia. Two individuals with Fraser syndrome were homozygous with respect to the same missense mutation of FREM2, confirming genetic heterogeneity. This is the only missense mutation reported in any blebbing mutant or individual with Fraser syndrome, suggesting that calcium binding in the CALXbeta-cadherin motif is important for normal functioning of FREM2.  相似文献   

15.
The c-Abl protein is a non-receptor tyrosine kinase involved in many aspects of mammalian development. c-Abl kinase is widely expressed, but high levels are found in hyaline cartilage in the adult, bone tissue in newborn mice, and osteoblasts and associated neovasculature at sites of endochondrial ossification in the fetus. Mice homozygous for mutations in the gene encoding c-Abl (AIM) display increased perinatal mortality, reduced fertility, foreshortened crania and defects in the maturation of B cells in bone marrow. Here we demonstrate that Abl-/- mice are also osteoporotic. The long bones of mutant mice contain thinner cortical bone and reduced trabecular bone volume. The osteoporotic phenotype is not due to accelerated bone turnover--both the number and activity of osteoclasts are similar to those of control littermates--but rather to dysfunctional osteoblasts. In addition, the rate of mineral apposition in the mutant animals is reduced. Osteoblasts from both stromal and calvarial explants showed delayed maturation in vitro as measured by expression of alkaline phosphatase (ALP), induction of mRNA encoding osteocalcin and mineral deposition.  相似文献   

16.
Collagen VI is an extracellular matrix protein that forms a microfilamentous network in skeletal muscles and other organs. Inherited mutations in genes encoding collagen VI in humans cause two muscle diseases, Bethlem myopathy and Ullrich congenital muscular dystrophy. We previously generated collagen VI-deficient (Col6a1-/-) mice and showed that they have a muscle phenotype that strongly resembles Bethlem myopathy. The pathophysiological defects and mechanisms leading to the myopathic disorder were not known. Here we show that Col6a1-/- muscles have a loss of contractile strength associated with ultrastructural alterations of sarcoplasmic reticulum (SR) and mitochondria and spontaneous apoptosis. We found a latent mitochondrial dysfunction in myofibers of Col6a1-/- mice on incubation with the selective F1F(O)-ATPase inhibitor oligomycin, which caused mitochondrial depolarization, Ca2+ deregulation and increased apoptosis. These defects were reversible, as they could be normalized by plating Col6a1-/- myofibers on collagen VI or by addition of cyclosporin A (CsA), the inhibitor of mitochondrial permeability transition pore (PTP). Treatment of Col6a1-/- mice with CsA rescued the muscle ultrastructural defects and markedly decreased the number of apoptotic nuclei in vivo. These findings indicate that collagen VI myopathies have an unexpected mitochondrial pathogenesis that could be exploited for therapeutic intervention.  相似文献   

17.
Defects in cilia are associated with several human disorders, including Kartagener syndrome, polycystic kidney disease, nephronophthisis and hydrocephalus. We proposed that the pleiotropic phenotype of Bardet-Biedl syndrome (BBS), which encompasses retinal degeneration, truncal obesity, renal and limb malformations and developmental delay, is due to dysfunction of basal bodies and cilia. Here we show that individuals with BBS have partial or complete anosmia. To test whether this phenotype is caused by ciliary defects of olfactory sensory neurons, we examined mice with deletions of Bbs1 or Bbs4. Loss of function of either BBS protein affected the olfactory, but not the respiratory, epithelium, causing severe reduction of the ciliated border, disorganization of the dendritic microtubule network and trapping of olfactory ciliary proteins in dendrites and cell bodies. Our data indicate that BBS proteins have a role in the microtubule organization of mammalian ciliated cells and that anosmia might be a useful determinant of other pleiotropic disorders with a suspected ciliary involvement.  相似文献   

18.
We conducted a meta-analysis of genome-wide association studies of systolic (SBP) and diastolic (DBP) blood pressure in 19,608 subjects of east Asian ancestry from the AGEN-BP consortium followed up with de novo genotyping (n = 10,518) and further replication (n = 20,247) in east Asian samples. We identified genome-wide significant (P < 5 × 10(-8)) associations with SBP or DBP, which included variants at four new loci (ST7L-CAPZA1, FIGN-GRB14, ENPEP and NPR3) and a newly discovered variant near TBX3. Among the five newly discovered variants, we obtained significant replication in the independent samples for all of these loci except NPR3. We also confirmed seven loci previously identified in populations of European descent. Moreover, at 12q24.13 near ALDH2, we observed strong association signals (P = 7.9 × 10(-31) and P = 1.3 × 10(-35) for SBP and DBP, respectively) with ethnic specificity. These findings provide new insights into blood pressure regulation and potential targets for intervention.  相似文献   

19.
Kras is commonly mutated in colon cancers, but mutations in Nras are rare. We have used genetically engineered mice to determine whether and how these related oncogenes regulate homeostasis and tumorigenesis in the colon. Expression of K-Ras(G12D) in the colonic epithelium stimulated hyperproliferation in a Mek-dependent manner. N-Ras(G12D) did not alter the growth properties of the epithelium, but was able to confer resistance to apoptosis. In the context of an Apc-mutant colonic tumor, activation of K-Ras led to defects in terminal differentiation and expansion of putative stem cells within the tumor epithelium. This K-Ras tumor phenotype was associated with attenuated signaling through the MAPK pathway, and human colon cancer cells expressing mutant K-Ras were hypersensitive to inhibition of Raf, but not Mek. These studies demonstrate clear phenotypic differences between mutant Kras and Nras, and suggest that the oncogenic phenotype of mutant K-Ras might be mediated by noncanonical signaling through Ras effector pathways.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号