首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
From Global Position System (GPS) measurements, there is a clockwise rotation around the eastern Himalayan syntax in the Tibetan Plateau. This phenomenon is difficult to be interpreted by simple two-dimensional modeling from a geodynamic point of view. Because of the extremely thick crust and the lower crust with relatively high temperature in the Tibetan Plateau, the lithospheric rheology in Tibet and surrounding areas present a complex structure. In general, the tectonic structure of the Tibetan Plateau consists of brittle upper crust, ductile lower crust, high viscosity lithospheric upper mantle, and low viscosity asthenosphere, the same as the case in many other continental regions. However, the lower crust in the Tibetan Plateau is much more ductile with a lower viscosity than those of its surroundings at the same depth, and the effective viscosity is low along the collision fault zone. In this study, we construct a three-dimensional Maxwell visco-elastic model in spherical coordinate system, and simulate the deformation process of the Tibetan Plateau driven by a continuous push from the Indian plate. The results show that the existence of the soft lower crust under the plateau makes the entire plateau uplift as a whole, and the Himalayas and the eastern Himalayan syntax uplift faster. Since the lower crust of surrounding blocks is harder except in the southeastern corner where the high-temperature material is much softer and forms an exit channel for material transfer, after the whole plateau reaches a certain height, the lower crustal and upper mantle material begins to move eastward or southeastward and drag the upper crust to behave same way. Thus, from the macroscopic point of view, a relative rigid motion of the plateau with a clockwise rotation around the eastern Himalayan syntax is developed. Supported by Knowledge Innovation Project of the Chinese Academy of Sciences (Grant No. KZCX2-YW-123) and National Natural Science Foundation of China (Grant Nos. 40774048 and 90814014)  相似文献   

2.
Copley A  Avouac JP  Wernicke BP 《Nature》2011,472(7341):79-81
How surface deformation within mountain ranges relates to tectonic processes at depth is not well understood. The upper crust of the Tibetan Plateau is generally thought to be poorly coupled to the underthrusting Indian crust because of an intervening low-viscosity channel. Here, however, we show that the contrast in tectonic regime between primarily strike-slip faulting in northern Tibet and dominantly normal faulting in southern Tibet requires mechanical coupling between the upper crust of southern Tibet and the underthrusting Indian crust. Such coupling is inconsistent with the presence of active 'channel flow' beneath southern Tibet, and suggests that the Indian crust retains its strength as it underthrusts the plateau. These results shed new light on the debates regarding the mechanical properties of the continental lithosphere, and the deformation of Tibet.  相似文献   

3.
Normal faulting in central Tibet since at least 13.5 Myr ago   总被引:16,自引:0,他引:16  
Tectonic models for the evolution of the Tibetan plateau interpret observed east-west thinning of the upper crust to be the result of either increased potential energy of elevated crust or geodynamic processes that may be unrelated to plateau formation. A key piece of information needed to evaluate these models is the timing of deformation within the plateau. The onset of normal faulting has been estimated to have commenced in southern Tibet between about 14 Myr ago and about 8 Myr ago and, in central Tibet, about 4 Myr ago. Here, however, we report a minimum age of approximately 13.5 Myr for the onset of graben formation in central Tibet, based on mineralization ages determined with Rb-Sr and 40Ar-39Ar data that post-date a major graben-bounding normal fault. These data, along with evidence for prolonged activity of normal faulting in this and other Tibetan grabens, support models that relate normal faulting to processes occurring beneath the plateau. Thinning of the upper crust is most plausibly the result of potential-energy increases resulting from spatially and temporally heterogeneous changes in thermal structure and density distribution within the crust and upper mantle beneath Tibet. This is supported by recent geophysical and geological data, which indicate that spatial heterogeneity exists in both the Tibetan crust and lithospheric mantle.  相似文献   

4.
Recent mapping in the Gangdese block has revealed many leucogranites that are similar to those in the High Himalaya. These leucogranites formed at ~140 Ma as indicated by monazite Th-Pb ion-microprobe dating and cooled at ~130 Ma as indicated by muscovite ^40Ar/^39Ar dating. In conjunction with previous structural and paleogeographic studies, the new data indicate that the Gangdese block underwent crustal thickening and associated exhumation during ~140—130 Ma. In this regard, the southern margin of Eurasia continent was comparable to the modern South American Altiplano-Puna plateau, the prime example of active ocean-continent subduction and associated thickened crust. Specifically, the early stages of crustal thickening and uplifting of the Gangdese block may result from subduction of the Neo-Tethyan Ocean. If the Tibetan Plateau would form by accretion of a series of blocks with thickened crust, an elevated topographic plateau similar to the Altiplano-Puna plateau had formed before collision between the Indian and Eurasian plates. Then the Tibetan Plateau would have quickly thickened, uplifted, and begun to extend soon after onset of the collision. Thus, the deformational mechanism of the Tibetan Plateau is not distributed shortening, but rather concentrating deformation within regions of thin crust between the accreted blocks.  相似文献   

5.
Plateau 'pop-up' in the great 1897 Assam earthquake   总被引:5,自引:0,他引:5  
Bilham R  England P 《Nature》2001,410(6830):806-809
The great Assam earthquake of 12 June 1897 reduced to rubble all masonry buildings within a region of northeastern India roughly the size of England, and was felt over an area exceeding that of the great 1755 Lisbon earthquake. Hitherto it was believed that rupture occurred on a north-dipping Himalayan thrust fault propagating south of Bhutan. But here we show that the northern edge of the Shillong plateau rose violently by at least 11 m during the Assam earthquake, and that this was due to the rupture of a buried reverse fault approximately 110 km in length and dipping steeply away from the Himalaya. The stress drop implied by the rupture geometry and the prodigious fault slip of 18 +/- 7 m explains epicentral accelerations observed to exceed 1g vertically and surface velocities exceeding 3 m s-1 (ref. 1). This quantitative observation of active deformation of a 'pop-up' structure confirms that faults bounding such structures can penetrate the whole crust. Plateau uplift in the past 2-5 million years has caused the Indian plate to contract locally by 4 +/- 2 mm yr-1, reducing seismic risk in Bhutan but increasing the risk in northern Bangladesh.  相似文献   

6.
C Beaumont  R A Jamieson  M H Nguyen  B Lee 《Nature》2001,414(6865):738-742
Recent interpretations of Himalayan-Tibetan tectonics have proposed that channel flow in the middle to lower crust can explain outward growth of the Tibetan plateau, and that ductile extrusion of high-grade metamorphic rocks between coeval normal- and thrust-sense shear zones can explain exhumation of the Greater Himalayan sequence. Here we use coupled thermal-mechanical numerical models to show that these two processes-channel flow and ductile extrusion-may be dynamically linked through the effects of surface denudation focused at the edge of a plateau that is underlain by low-viscosity material. Our models provide an internally self-consistent explanation for many observed features of the Himalayan-Tibetan system.  相似文献   

7.
Great Himalayan earthquakes and the Tibetan plateau   总被引:7,自引:0,他引:7  
Feldl N  Bilham R 《Nature》2006,444(7116):165-170
It has been assumed that Himalayan earthquakes are driven by the release of compressional strain accumulating close to the Greater Himalaya. However, elastic models of the Indo-Asian collision using recently imaged subsurface interface geometries suggest that a substantial fraction of the southernmost 500 kilometres of the Tibetan plateau participates in driving great ruptures. We show here that this Tibetan reservoir of elastic strain energy is drained in proportion to Himalayan rupture length, and that the consequent growth of slip and magnitude with rupture area, when compared to data from recent earthquakes, can be used to infer a approximately 500-year renewal time for these events. The elastic models also illuminate two puzzling features of plate boundary seismicity: how great earthquakes can re-rupture regions that have already ruptured in recent smaller earthquakes and how mega-earthquakes with greater than 20 metres slip may occur at millennia-long intervals, driven by residual strain following many centuries of smaller earthquakes.  相似文献   

8.
The Colorado plateau is a large, tectonically intact, physiographic province in the southwestern North American Cordillera that stands at ~1,800-2,000?m elevation and has long been thought to be in isostatic equilibrium. The origin of these high elevations is unclear because unlike the surrounding provinces, which have undergone significant Cretaceous-Palaeogene compressional deformation followed by Neogene extensional deformation, the Colorado plateau is largely internally undeformed. Here we combine new seismic tomography and receiver function images to resolve a vertical high-seismic-velocity anomaly beneath the west-central plateau that extends more than 200?km in depth. The upper surface of this anomaly is seismically defined by a dipping interface extending from the lower crust to depths of 70-90?km. The base of the continental crust above the anomaly has a similar shape, with an elevated Moho. We interpret these seismic structures as a continuing regional, delamination-style foundering of lower crust and continental lithosphere. This implies that Pliocene (2.6-5.3?Myr ago) uplift of the plateau and the magmatism on its margins are intimately tied to continuing deep lithospheric processes. Petrologic and geochemical observations indicate that late Cretaceous-Palaeogene (~90-40?Myr ago) low-angle subduction hydrated and probably weakened much of the Proterozoic tectospheric mantle beneath the Colorado plateau. We suggest that mid-Cenozoic (~35-25?Myr ago) to Recent magmatic infiltration subsequently imparted negative compositional buoyancy to the base and sides of the Colorado plateau upper mantle, triggering downwelling. The patterns of magmatic activity suggest that previous such events have progressively removed the Colorado plateau lithosphere inward from its margins, and have driven uplift. Using Grand Canyon incision rates and Pliocene basaltic volcanism patterns, we suggest that this particular event has been active over the past ~6?Myr.  相似文献   

9.
The Cenozoic collision between the Indian and Asian continents formed the Tibetan plateau, beginning about 70 million years ago. Since this time, at least 1,400 km of convergence has been accommodated by a combination of underthrusting of Indian and Asian lithosphere, crustal shortening, horizontal extrusion and lithospheric delamination. Rocks exposed in the Himalaya show evidence of crustal melting and are thought to have been exhumed by rapid erosion and climatically forced crustal flow. Magnetotelluric data can be used to image subsurface electrical resistivity, a parameter sensitive to the presence of interconnected fluids in the host rock matrix, even at low volume fractions. Here we present magnetotelluric data from the Tibetan-Himalayan orogen from 77 degrees E to 92 degrees E, which show that low resistivity, interpreted as a partially molten layer, is present along at least 1,000 km of the southern margin of the Tibetan plateau. The inferred low viscosity of this layer is consistent with the development of climatically forced crustal flow in Southern Tibet.  相似文献   

10.
Abers GA  Ferris A  Craig M  Davies H  Lerner-Lam AL  Mutter JC  Taylor B 《Nature》2002,418(6900):862-865
In many highly extended rifts on the Earth, tectonic removal of the upper crust exhumes mid-crustal rocks, producing metamorphic core complexes. These structures allow the upper continental crust to accommodate tens of kilometres of extension, but it is not clear how the lower crust and underlying mantle respond. Also, despite removal of the upper crust, such core complexes remain both topographically high and in isostatic equilibrium. Because many core complexes in the western United States are underlain by a flat Moho discontinuity, it has been widely assumed that their elevation is supported by flow in the lower crust or by magmatic underplating. These processes should decouple upper-crust extension from that in the mantle. In contrast, here we present seismic observations of metamorphic core complexes of the western Woodlark rift that show the overall crust to be thinned beneath regions of greatest surface extension. These core complexes are actively being exhumed at a rate of 5-10 km Myr(-1), and the thinning of the underlying crust appears to be compensated by mantle rocks of anomalously low density, as indicated by low seismic velocities. We conclude that, at least in this case, the development of metamorphic core complexes and the accommodation of high extension is not purely a crustal phenomenon, but must involve mantle extension.  相似文献   

11.
Two-pyroxene granulite and clinopyroxene granulite xenoliths have been recently discovered in the Late Paleogene toNeogene volcanic rocks (with ages in the range of 4.27~44.60 Ma) that outcropped in Hoh Xil, central Tibetan plateau. Based on theelectron microprobe analysis data, the xenoliths provide constraints for the formation equilibrium temperatures of the two-pyroxene gran-ulite being about 783 to 818℃ as determined by two-pyroxene thermometry and the forming pressure of the clinopyroxene granulite beingabout 0.845 to 0.858 GPa that is equivalent to 27.9~28.3 km depth respectively. It indicates that these granulite xenoliths represent thesamples from the middle part of the thickened Tibetan crust. This discovery is important and significant to making further discussion onthe component and thermal regime of the deep crust of the Tibetan plateau.  相似文献   

12.
Tomographical inversion was performed using the data recorded by 51 seismographys deployed on a profile that followed southern Xizang (Tibet) high-way through a Sino-French Joint seismic experiment. The results indicate that the underthrusting Indian Plate is limited to the south of Indus-Yarlung Zangbo Suture (IYS) beneath Tethyan Himalaya, extends vertically to 150 km deep with relatively high angle near Gala, and becomes horizontally northward. The seismic velocities beneath Kang-mar, Gangdise and Yangbajain-Golug rift in the middle of the lithosphere show low velocity features, which may indicate the existence of high temperature and partial melting. The results from tomography strongly suggest that the continent-continent subduction occurred only beneath Himalaya and was confined to the south of IYS since the collision between India and Eurasia.  相似文献   

13.
Zhisheng A  Kutzbach JE  Prell WL  Porter SC 《Nature》2001,411(6833):62-66
The climates of Asia are affected significantly by the extent and height of the Himalayan mountains and the Tibetan plateau. Uplift of this region began about 50 Myr ago, and further significant increases in altitude of the Tibetan plateau are thought to have occurred about 10-8 Myr ago, or more recently. However, the climatic consequences of this uplift remain unclear. Here we use records of aeolian sediments from China and marine sediments from the Indian and North Pacific oceans to identify three stages of evolution of Asian climates: first, enhanced aridity in the Asian interior and onset of the Indian and east Asian monsoons, about 9-8 Myr ago; next, continued intensification of the east Asian summer and winter monsoons, together with increased dust transport to the North Pacific Ocean, about 3.6-2.6 Myr ago; and last, increased variability and possible weakening of the Indian and east Asian summer monsoons and continued strengthening of the east Asian winter monsoon since about 2.6 Myr ago. The results of a numerical climate-model experiment, using idealized stepwise increases of mountain-plateau elevation, support the argument that the stages in evolution of Asian monsoons are linked to phases of Himalaya-Tibetan plateau uplift and to Northern Hemisphere glaciation.  相似文献   

14.
青藏高原拉萨地块是印度板块与欧亚板块碰撞的重要地区之一,其中广泛发育的碰撞—后碰撞岩浆岩记录了新生代以来印度大陆岩石圈向北俯冲的全过程以及拉萨地块在碰撞-后碰撞之后的岩浆作用类型.基于对措勘—赛利普地区新生代火山岩地球化学及Sr、Nd同位素资料的分析,表明火山岩中以明显富碱和高钾为特征;Sr同位素呈递增而Nd同位素呈递...  相似文献   

15.
西藏宗堡建筑探源   总被引:1,自引:0,他引:1  
宗堡建筑是西藏官式建筑的重要形式,专指西藏地方政府宗(县)一级政府机关所在地,属于西藏宫殿建筑类型。西藏宗堡建筑起源很早,是宫殿与寺院以及防御堡垒的综合体,在属于藏传佛教文化圈的喜玛拉雅地区也有较广泛的分布,并带有一定的本地化特征。文章通过对宗堡建筑起源和建筑特征研究,说明西藏宗堡建筑为多起源,该建筑类型对藏传佛教文化圈建筑有一定影响。  相似文献   

16.
Zandt G  Gilbert H  Owens TJ  Ducea M  Saleeby J  Jones CH 《Nature》2004,431(7004):41-46
Seismic data provide images of crust-mantle interactions during ongoing removal of the dense batholithic root beneath the southern Sierra Nevada mountains in California. The removal appears to have initiated between 10 and 3 Myr ago with a Rayleigh-Taylor-type instability, but with a pronounced asymmetric flow into a mantle downwelling (drip) beneath the adjacent Great Valley. A nearly horizontal shear zone accommodated the detachment of the ultramafic root from its granitoid batholith. With continuing flow into the mantle drip, viscous drag at the base of the remaining approximately 35-km-thick crust has thickened the crust by approximately 7 km in a narrow welt beneath the western flank of the range. Adjacent to the welt and at the top of the drip, a V-shaped cone of crust is being dragged down tens of kilometres into the core of the mantle drip, causing the disappearance of the Moho in the seismic images. Viscous coupling between the crust and mantle is therefore apparently driving present-day surface subsidence.  相似文献   

17.
The determination of melt distribution in the crust and the nature of the crust-mantle boundary (the 'Moho') is fundamental to the understanding of crustal accretion processes at oceanic spreading centres. Upper-crustal magma chambers have been imaged beneath fast- and intermediate-spreading centres but it has been difficult to image structures beneath these magma sills. Using three-dimensional seismic reflection images, here we report the presence of Moho reflections beneath a crustal magma chamber at the 9 degrees 03' N overlapping spreading centre, East Pacific Rise. Our observations highlight the formation of the Moho at zero-aged crust. Over a distance of less than 7 km along the ridge crest, a rapid increase in two-way travel time of seismic waves between the magma chamber and Moho reflections is observed, which we suggest is due to a melt anomaly in the lower crust. The amplitude versus offset variation of reflections from the magma chamber shows a coincident region of higher melt fraction overlying this anomalous region, supporting the conclusion of additional melt at depth.  相似文献   

18.
Magnetotelluric (MT) survey has been carried out in the eastern margin of the Tibetan Plateau and its neighboring Shimian-Leshan area, Sichuan Province. Analysis of this MT data reveals that the electric structure of the Tibetan Plateau differ much from that of the Sichuan block. In general, the electric resistivity of crust beneath the Sichuan block in the east is larger than that of the eastern margin of the Tibetan Plateau in the west. The crust of the plateau is divided into upper, middle, and lower layers. The middle crust is a low resistivity layer with minimum down to 3-10Ωm about 10-15 km thick. It presumably contains partial melt and/or salt-bearing fluids with low viscosity, prone to deform and flow, producing a "channel flow" under the southeastward squeeze of the eastern Tibetan Plateau. This low-resistivity layer makes the upper crust decoupled mechanically from the lower crust. In the brittle upper crust, faults are dominated by left-lateral strike-slip and thrust motions, leading to surface rising and shallow earthquakes. The low-resistivity layer also cut the Xianshuihe-Anninghe fault zone into two sections vertically. In this region, the thicknesses of upper, middle, and lower crust vary laterally, producing a transitional zone in the eastern margin of the Tibetan Plateau characterized by thicker crust and higher elevation in the west and thinner crust and lower elevation in the east.  相似文献   

19.
The electric Moho   总被引:2,自引:0,他引:2  
Jones AG  Ferguson IJ 《Nature》2001,409(6818):331-333
Since Mohorovici? discovered a dramatic increase in compressional seismic velocity at a depth of 54 km beneath the Kulpa Valley in Croatia, the 'Moho' has become arguably the most important seismological horizon in Earth owing to its role in defining the crust-mantle boundary. It is now known to be a ubiquitous feature of the Earth, being found beneath both the continents and the oceans, and is commonly assumed to separate lower-crustal mafic rocks from upper-mantle ultramafic rocks. Electromagnetic experiments conducted to date, however, have failed to detect a corresponding change in electrical conductivity at the base of the crust, although one might be expected on the basis of laboratory measurements. Here we report electromagnetic data from the Slave craton, northern Canada, which show a step-change in conductivity at Moho depths. Such resolution is possible because the Slave craton is highly anomalous, exhibiting a total crustal conductance of less than 1 Siemens--more than an order of magnitude smaller than other Archaean cratons. We also found that the conductivity of the uppermost continental mantle directly beneath the Moho is two orders of magnitude more conducting than laboratory studies on olivine would suggest, inferring that there must be a connected conducting phase.  相似文献   

20.
Here we present an insight into the genesis of Himalayan granulitic lower crust based on the experimental studies on the dehydration melting of natural biotite-plagioclase gneiss performed at the temperatures of 770-980℃ and the pressures of 1.0-1.4 GPa. The experiments produce peraluminous granitic melt and residual phase assemblage (Pl+Qz+Gat+Bio+Opx±Cpx+Ilm/Rut±Kfs). The residual mineral assemblage is similar to those of granu-lites observed at the eastern and western Himalayan syntax-ises, and the chemical compositions of characteristic minerals-garnet and pyroxene in the residual phase and the granu-lite are identical. Additionally, the modeled wave velocities of the residual phase assemblage are comparable well with those of the top part of lower crust beneath Himalayas. Hence, we suggest that (1) the top part of lower crust beneath Himalayas is probably made up of garnet-bearing intermediate granulite; (2) the formations of granulite and leucogranites in Himalayas are interrelated as the results of crustal anatexis; and (3) dehydration melting of bio-tite-plagioclase gneiss is an important process to form granulitic lower crust, to reconstitute and adjust the crustal texture. Moreover, experimental results can provide constraints on determining the P-T conditions of Himalayan crustal anatexis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号