首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
本文依托苏州地铁S1线某区间盾构隧道,针对后期沿线可能出现的堆载问题,采用地层-结构法建立精细化三维数值分析模型,系统地探究了堆载条件下,隧道上覆、穿越和下卧软土地层对盾构管片变形的影响规律。结果表明:在地面堆载作用下,上覆荷载经过土层扩散,使管片变形沿纵向呈“正态分布”,竖向变形最大处位于堆载位置正下方的拱顶处;隧道最大水平位移发生在荷载作用位置正下方管片的左右拱腰处,并且左右拱腰同时产生向外的水平位移;当堆载中心在隧道正上方时,隧道下卧软土层时隧道变形量最大,其次是隧道穿越软土层时,隧道上覆软土层时对隧道竖向变形影响最小;隧道下卧土层的弹性模量对隧道结构变形影响最大,且弹性模量越小,结构变形越明显。  相似文献   

2.
采用Boussinesq公式求解得到地面堆载工况下隧道轴线处的土体附加应力;基于剪切错台模型,运用最小势能原理计算得到下卧地铁盾构隧道的纵向位移以及相邻盾构衬砌环之间的错台量和环间剪切力。通过算例分析,研究堆载面荷载q、堆载偏移距离s、隧道上部覆土厚度h以及堆载尺寸B和L对隧道纵向位移的影响。研究结果表明:q越大,盾构隧道的沉降量就越大,但隧道沉降影响范围并没有增大;随着s增大,隧道沉降量越来越小且沉降量减小的速率加快,隧道的水平位移则先增大后减小;随着h增加,隧道最大沉降减小,同时隧道沉降影响范围加大;B的改变对隧道竖向位移影响非常小,L的改变对隧道沉降量及范围的影响较大;隧道的竖向位移要明显大于隧道的水平位移。  相似文献   

3.
随着城市的快速发展,在既有盾构隧道周边地块的开发利用过程中,进行地面堆载是不可避免的,为评估地面堆载对隧道结构安全的影响,以区间盾构隧道为工程背景,首先,采用等效轴向刚度模型理论计算得出隧道变形界限值;其次,采用ABAQUS数值模拟软件,以隧道下卧软土层为地层条件建立三维实体数值模型,分析不同堆载范围和不同堆载大小对隧道结构纵向变形曲率、环缝张开量以及螺栓应力的影响;最后,将计算结果与隧道变形界限值进行对比,判定结构是否安全,并依此划分隧道的工作状态。研究成果对软土地区盾构隧道的结构设计和安全保护具有重要意义。  相似文献   

4.
城市施工过程中盾构隧道附近地面出现土方堆载会对隧道管片产生不利影响,情况严重时可能会导致隧道管片开裂。本文以三维数值计算的方法,分析了既有盾构隧道在附近地面堆载情况下堆载位置与隧道埋深对盾构隧道管片变形的影响,得出既有盾构隧道受不同影响因素作用下的变形规律,分析结果可以对保护既有盾构隧道提供参考依据。  相似文献   

5.
密集城市区近接基坑工程易引发超大直径(>15 m)盾构隧道变形、结构开裂及渗漏水.当前超大直径盾构隧道建设处于起步阶段,基坑影响下隧道变形响应规律不明,合理的影响分区匮乏.本文采用有限元软件建立超大直径隧道旁侧基坑开挖的三维有限元模型,分析超大直径隧道的结构变形响应机制,并探讨隧道埋深、隧道-基坑间距、基坑开挖深度等因素影响规律.结果表明,基坑开挖引发地层朝向基坑的“鼓肚子”水平位移和“勺子”状竖向位移;与小直径隧道相比,超大直径盾构隧道表现出较小的纵向变形和较为显著的横向变形;隧道变形随隧道-旁侧基坑围护结构距离增大而减小、随埋深增大先增大后减小、随基坑开挖深度的增大而增大.通过基坑开挖深度归一化后,隧道最大变形与隧道-基坑间距可用指数函数高精度拟合.提出归一化后的影响分区图,为实际工程超大直径隧道结构保护提供重要的参考.  相似文献   

6.
以杭州市某污水管道顶管施工上穿既有地铁隧道为背景,利用FLAC3D模拟顶管施工过程,将模拟结果与实测数据进行对比,验证了模型的合理性.通过改变顶管管径、管材及地铁隧道周围土体的特性,分析了不同工况下顶管上穿施工对既有地铁隧道的位移影响.研究结果表明,顶管上穿施工对既有地铁隧道所产生的最大位量均位移于顶管轴线下方的地铁截面处,离顶管轴线越远,变形越小;地铁盾构隧道的变形随顶管的管径的增大而增大,而且对竖直方向位移的影响远大于对水平方向位移的影响;管材的弹性模量越小,地铁隧道的变形越大;地铁隧道周围土体弹性模量越小,顶管施工对隧道位移的影响越大.  相似文献   

7.
为研究坑边堆载对桩锚支护结构的内力和位移的影响,采用有限元数值模拟方法,运用Adina软件对实际基坑工程的开挖支护过程进行模拟,得到了支护结构分别在不同堆载大小、堆载宽度和堆载距坑边距离作用下的位移值和弯矩值的变化曲线.研究结果表明:堆载对支护结构的内力位移影响较大,不同堆载作用形式对支护结构的影响规律不同,减小堆载大小、增大堆载宽度和距坑边距离可有效减小支护结构的位移,使桩身弯矩分布更合理.  相似文献   

8.
对某软土地基的塑料排水板堆载预压进行了桩基沉降和地基土孔隙水压力监测,使用ABAQUS有限元分析软件建立了三维有限元分析模型,现场实测数据结合有限元模型分析结果,系统研究了塑料排水板堆载预压处理软土地基对临近桩基的影响,研究结果表明:堆载预压初期孔隙水压力急剧增加,前期孔隙水压力消散较快,后期逐渐减小;临近桩基的变形主要以水平变形为主,竖向位移较小,随着孔隙水压力的消散,桩身水平位移随时间逐渐减小;堆载预压对临近桩基的不利影响主要发生在堆载预压初期,该阶段桩侧被动土压力和桩身弯矩均最大,且都位于桩顶处,随着孔隙水压力的消散,桩侧被动土压力和桩身弯矩都随时间逐渐减小;桩身最大水平位移和最大弯矩都随堆载预压距离的增加而急剧减小,因此在桩基附近进行塑料排水板堆载预压处理软土地基时,应保持合适的堆载预压距离.  相似文献   

9.
为在有下卧隧道的基坑开挖过程中实现及时有效的控制隧道隆起,本文提出局部临时堆载措施,并根据Mindlin公式采用MATLAB软件分析局部堆载的3项参数即堆载力、堆载面积和堆载位置对附加应力的影响,基于某基坑案例采用FLAC3D软件进行正交模拟验证.结果表明,堆载力对隧道隆起影响最大,堆载面积次之,堆载位置最小.隧道隆起值随堆载力增大呈比例减小,并随堆载面积增加而逐渐减小,减小幅度逐渐减缓,且随堆载中心与隧道轴线距离缩短,其影响程度逐渐增大.在实际工程中,优先考虑预留合适尺寸的土体并施加堆载作为局部堆载措施.当隧道位于基坑下部时,局部堆载力不得少于原有土体自重的50%,堆载面积应大于基坑总面积的5%;当隧道位于基坑侧面时,局部堆载力不得少于原有土体自重的1倍,堆载面积应大于基坑总面积的7.5%,才能有效控制隧道沉降.  相似文献   

10.
为确保盾构安全顺利地下穿地铁运营U形槽线路,避免下穿过程中引起U形槽结构过量沉降,影响运营安全,以北京新机场线2、3号风井盾构区间大直径土压平衡盾构下穿既有大兴线U形槽为工程背景,研究了砂卵石地层盾构隧道开挖对U形槽变形影响。通过对U形槽结构竖向位移、横向位移、轨道竖向位移、轨距等大量监测数据进行分析,得出盾构隧道开挖过程中既有结构的变形规律。结果表明:下方隧道开挖会造成U形槽和轨道结构产生不均匀隆起、沉降变形,竖向变形在2. 0 mm以内;隧道横向变形表现为不规则波动,变形在±0. 5 mm以内;轨距变化在±1 mm以内。既有U形槽结构竖向位移与盾构掘进参数关系密切;通过严格控制盾构施工参数,采用二次注浆、深孔注浆方式对管片背后进行填充,可大幅减少结构沉降。研究结果可为控制U形槽结构变形,确保既有线运行的安全提供借鉴。  相似文献   

11.
地表堆载会引起邻近土体产生沉降变形,进而会对地下空间中的邻近隧道造成安全威胁。为了获得邻近既有隧道受到地表作用的影响,采用Boussinesq解获得地表堆载对邻近既有隧道的竖向附加应力,将既有隧道简化成搁置Vlasov地基模型的Euler-Bernoulli梁,引入既有隧道侧向土体影响,进一步获得隧道在邻近堆载作用下的变形响应。通过与既有工程案例数据对比分析可知:该方法理论解析与监测数据较为接近,验证了方法的可靠性;与该方法退化解析对比,本文方法更贴近工程实测数据。参数研究表明:隧道与堆载中心间距的增大会引起隧道纵向位移及内力的减小;堆载荷载的增大会引起隧道纵向位移及内力的增大;随着既有隧道刚度的逐渐增大,隧道纵向位移会逐渐减小,但会引起既有隧道内力的增大。  相似文献   

12.
结合某地铁区间隧道盾构施工近距穿越桥梁桩基的复杂条件,选取桥台与桥墩基础影响最大断面,对盾构施工引起地表沉降及桥梁桩基的变形、应力及内力进行三维数值模拟计算。结果表明:①双线隧道盾构推进引起地表最大沉降位于双线隧道中间某处,大于单线隧道引起的地表最大沉降,地表沉降随着两条隧道间距的减小而增加;②右线隧道盾构施工引起B0C0桥台桩基近隧道边桩产生的最大变形与内力均发生在距桩顶13 m处,最大横向挠曲变形、纵向挠曲变形分别为2. 0、4. 8 cm,边桩内力致使桥台桩基超出承载能力,承台发生倾向隧道一侧的倾斜和水平面内扭转,严重影响桩基的安全;③双线隧道盾构施工引起B7C7桥墩桩基近隧道边桩桩顶处产生最大位移,最大横向水平位移、纵向水平位移分别为2. 6、5. 2 cm,右侧桥墩桩基承台产生的最大横向水平位移、竖向位移、纵向水平位移分别为3. 2、3. 4、4. 6 cm,承台发生倾向隧道一侧的倾斜和水平面内扭转,倾斜值为0. 001 8,接近规范规定的允许值,盾构施工时须引起注意。基于上述分析结果,提出盾构近距推进时的施工监测及施工参数调整的建议。  相似文献   

13.
铁路轨道下盾构施工所致地面沉降的数值模拟   总被引:3,自引:0,他引:3  
以天津津滨轻轨天津站站——七经路站盾构施工区间工程为对象,采用三维有限元方法,对在多条铁路轨道下长距离盾构掘进过程引起的地表变形进行数值模拟.根据模拟结果,详细分析盾构穿越导致的沿盾构方向和垂直于盾构方向的地表沉降,得出盾构施工各阶段的地表沉降规律,研究盾构掘进对地表的扰动范围,分析先施工隧道和后施工隧道对地表沉降的贡献差异,并探讨对铁路荷载的影响.计算结果与监测结果吻合较好.  相似文献   

14.
结合某地铁区间盾构隧道所处围岩地质状况,引入荷载释放系数,采用三维有限元法对盾构隧道施工所引起的隧道应力场和位移场、管片环整环变形、地表三维沉隆变位与横、纵向沉隆曲线分布变化规律进行了深入研究,得到如下结论:(1)隧道施工将引起呈带状分布于隧道拱顶的较大管片环应力,且该应力随施工进程增幅较小。(2)管片环最大和最小位移分别呈带状分布于盾构隧道拱顶和拱底,且随着掌子面的前行略有增加并渐趋稳定。管片环呈横向变形趋势发展,拱顶下沉量最大,拱腰外扩量次之,而拱底隆起量最小。(3)随着掌子面的逼近,前方约15m处地表形成隆起,随后下沉且该沉降速率较大,两侧土体向隧道中线移动,地表沉降槽较大但渐趋稳定。  相似文献   

15.
盾构始发端头土体加固时,如何保证加固土体的稳定性是需要解决的关键问题.结合苏州地铁某车站西端头盾构始发工程(无含水层),运用通用有限元分析软件在封门拆除这种最不利的工况下对该工程始发掘进进行了模拟分析.由数值模拟知,当纵向加固长度为3 m时,沿盾构隧道掘进方向土体向工作井内移动,最大位移发生在暴露掌子面的中心处,达12.92 mm,封门上方地表土体变形最大,沉降约为3.0 mm,强加固区范围内土体受力均在设计强度范围之内,计算出安全系数分别为2.05、1.47和1.30;在无含水层的盾构始发端头,纵向加固长度为3 m时就可以在强度上满足要求,且安全系数有富余.  相似文献   

16.
王乃勇 《科学技术与工程》2021,21(32):13919-13925
为研究盾构隧道斜交下穿施工对既有高速公路工程的影响,以某城市轨道交通盾构下穿工程为背景,采用FLAC3D进行盾构施工三维数值模拟,分析了双线盾构施工对公路路面、路堑边坡的影响规律,评价了施工方案的安全性。结果表明:盾构斜交下穿时,路面沉降呈现三维非对称特征,在公路横断面方向,沉降曲线呈现左低右高的线性规律,在公路纵断面方向,沉降曲线呈现左高右低的不对称“V”形,且横断面方向沉降总是大于纵向沉降;边坡竖向位移大于水平位移,以沉降变形为主,开挖面距边坡坡脚水平距离约为2倍洞径时,边坡位移显著增加,该区段为施工强影响区;双线盾构贯通后,路面最大沉降值为3.15mm,纵向沉降变化率为0.0094% ,边坡最大水平位移为1.2mm,三者均小于变形控制标准,公路路基、边坡无塑性区出现,处于弹性状态,盾构下穿施工对既有高速公路影响较小。研究结果可为类似盾构下穿工程提供参考。  相似文献   

17.
针对新建暗挖隧道对已建盾构隧道的影响,以济南地铁R3线盾构与浅埋暗挖隧道小净距并行段为依托,对暗挖隧道不同施工工法进行模拟优选,分析在帷幕注浆加固条件下新建暗挖隧道对已建盾构隧道管片变形及应力的影响,并结合现场实测数据对比验证优选施工方法的可靠性.研究结果表明:暗挖隧道施工工法对于地表沉降和隧道管片的变形影响显著,其中交叉中隔墙(cross diaphragm,CRD)法和双侧壁导坑法在控制地表沉降、管片变形及应力方面差异较小,且两者均优于核心土法和中隔墙(center diaphragm,CD)法.综合考虑施工速度、影响范围以及地表与既有盾构隧道变形控制等因素,确定暗挖隧道采用CRD法施工.现场监测表明采用优选的施工工法可以保证地表变形和盾构管片变形控制在允许范围之内.  相似文献   

18.
结合哈大客专沈阳站房改造工程研究了大跨度卸载对下卧既有盾构隧道管片及接头的影响.为准确反映管片环向接头在附加荷载作用下的张开、错位等情况,基于Flac3D建立三维模型,运用嵌入式梁单元模拟了螺栓接头,并针对实际工程中坑底堆载保护措施进行了数值计算.结果表明,既有隧道在2倍卸载宽度范围内发生隆起变形,最大隆起量为1593mm,最小纵向曲率半径为28248m,并且管片环向接头在附加荷载作用下产生的错位量及张开量分别为067,137mm,各项控制指标均满足工程要求.表明坑底堆载措施能保证盾构管片及接头在上部基坑施工期间的安全性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号