首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 260 毫秒
1.
Normal faulting in central Tibet since at least 13.5 Myr ago   总被引:16,自引:0,他引:16  
Tectonic models for the evolution of the Tibetan plateau interpret observed east-west thinning of the upper crust to be the result of either increased potential energy of elevated crust or geodynamic processes that may be unrelated to plateau formation. A key piece of information needed to evaluate these models is the timing of deformation within the plateau. The onset of normal faulting has been estimated to have commenced in southern Tibet between about 14 Myr ago and about 8 Myr ago and, in central Tibet, about 4 Myr ago. Here, however, we report a minimum age of approximately 13.5 Myr for the onset of graben formation in central Tibet, based on mineralization ages determined with Rb-Sr and 40Ar-39Ar data that post-date a major graben-bounding normal fault. These data, along with evidence for prolonged activity of normal faulting in this and other Tibetan grabens, support models that relate normal faulting to processes occurring beneath the plateau. Thinning of the upper crust is most plausibly the result of potential-energy increases resulting from spatially and temporally heterogeneous changes in thermal structure and density distribution within the crust and upper mantle beneath Tibet. This is supported by recent geophysical and geological data, which indicate that spatial heterogeneity exists in both the Tibetan crust and lithospheric mantle.  相似文献   

2.
Imaging the Indian subcontinent beneath the Himalaya   总被引:7,自引:0,他引:7  
The rocks of the Indian subcontinent are last seen south of the Ganges before they plunge beneath the Himalaya and the Tibetan plateau. They are next glimpsed in seismic reflection profiles deep beneath southern Tibet, yet the surface seen there has been modified by processes within the Himalaya that have consumed parts of the upper Indian crust and converted them into Himalayan rocks. The geometry of the partly dismantled Indian plate as it passes through the Himalayan process zone has hitherto eluded imaging. Here we report seismic images both of the decollement at the base of the Himalaya and of the Moho (the boundary between crust and mantle) at the base of the Indian crust. A significant finding is that strong seismic anisotropy develops above the decollement in response to shear processes that are taken up as slip in great earthquakes at shallower depths. North of the Himalaya, the lower Indian crust is characterized by a high-velocity region consistent with the formation of eclogite, a high-density material whose presence affects the dynamics of the Tibetan plateau.  相似文献   

3.
From Global Position System (GPS) measurements, there is a clockwise rotation around the eastern Himalayan syntax in the Tibetan Plateau. This phenomenon is difficult to be interpreted by simple two-dimensional modeling from a geodynamic point of view. Because of the extremely thick crust and the lower crust with relatively high temperature in the Tibetan Plateau, the lithospheric rheology in Tibet and surrounding areas present a complex structure. In general, the tectonic structure of the Tibetan Plateau consists of brittle upper crust, ductile lower crust, high viscosity lithospheric upper mantle, and low viscosity asthenosphere, the same as the case in many other continental regions. However, the lower crust in the Tibetan Plateau is much more ductile with a lower viscosity than those of its surroundings at the same depth, and the effective viscosity is low along the collision fault zone. In this study, we construct a three-dimensional Maxwell visco-elastic model in spherical coordinate system, and simulate the deformation process of the Tibetan Plateau driven by a continuous push from the Indian plate. The results show that the existence of the soft lower crust under the plateau makes the entire plateau uplift as a whole, and the Himalayas and the eastern Himalayan syntax uplift faster. Since the lower crust of surrounding blocks is harder except in the southeastern corner where the high-temperature material is much softer and forms an exit channel for material transfer, after the whole plateau reaches a certain height, the lower crustal and upper mantle material begins to move eastward or southeastward and drag the upper crust to behave same way. Thus, from the macroscopic point of view, a relative rigid motion of the plateau with a clockwise rotation around the eastern Himalayan syntax is developed. Supported by Knowledge Innovation Project of the Chinese Academy of Sciences (Grant No. KZCX2-YW-123) and National Natural Science Foundation of China (Grant Nos. 40774048 and 90814014)  相似文献   

4.
The Liuqu Conglomerate, situated to the south of Yarlung Tsangbo Suture Zone (YTSZ), is a suit of molasse formed in a foreland basin of the Himalayan orogenic belt after the collision between the two plates of the Indian and Eurasion. It is of great significance in constraining the younger limit time of the collision of the two plates and providing stratigraphic evidence to reveal the post?collisional tectonic evolution and uplifting history of the Tibet plateau. However, the age of this molasse suit and its correlation to other synchronous strata distributed in southern Tibet have been in great disputes for a long time. Especially in recent years, argues on its ages are growing violently with the recognition of the great sedimentary tectonic significances of this molasse. During the field work carried out recently on this molasse suit, a lot of plant fossils were found preserved in fairly good conditions in the upper part of this strata, which is of great help in determining its age. By identification, the assemblage of the plant fossils belongs to a tropic to subtropic flora developed in the southern margin of the Northern Hemisphere supercontinent during the Middle to Later Eocene, which can provide good constraint on its formation age. This paper is to give a brief introduction of the plant assemblage and its age, and to discuss their tectonic significances.  相似文献   

5.
Tomographical inversion was performed using the data recorded by 51 seismographys deployed on a profile that followed southern Xizang (Tibet) high-way through a Sino-French Joint seismic experiment. The results indicate that the underthrusting Indian Plate is limited to the south of Indus-Yarlung Zangbo Suture (IYS) beneath Tethyan Himalaya, extends vertically to 150 km deep with relatively high angle near Gala, and becomes horizontally northward. The seismic velocities beneath Kang-mar, Gangdise and Yangbajain-Golug rift in the middle of the lithosphere show low velocity features, which may indicate the existence of high temperature and partial melting. The results from tomography strongly suggest that the continent-continent subduction occurred only beneath Himalaya and was confined to the south of IYS since the collision between India and Eurasia.  相似文献   

6.
The Cenozoic collision between the Indian and Asian continents formed the Tibetan plateau, beginning about 70 million years ago. Since this time, at least 1,400 km of convergence has been accommodated by a combination of underthrusting of Indian and Asian lithosphere, crustal shortening, horizontal extrusion and lithospheric delamination. Rocks exposed in the Himalaya show evidence of crustal melting and are thought to have been exhumed by rapid erosion and climatically forced crustal flow. Magnetotelluric data can be used to image subsurface electrical resistivity, a parameter sensitive to the presence of interconnected fluids in the host rock matrix, even at low volume fractions. Here we present magnetotelluric data from the Tibetan-Himalayan orogen from 77 degrees E to 92 degrees E, which show that low resistivity, interpreted as a partially molten layer, is present along at least 1,000 km of the southern margin of the Tibetan plateau. The inferred low viscosity of this layer is consistent with the development of climatically forced crustal flow in Southern Tibet.  相似文献   

7.
The Ramba gneiss dome, one of the north Himalayan gneiss domes, is composed of three tectono-lithologic units separated by an upper and a lower detachment fault. Low-grade metamorphic Tethyan Himalayan sedimentary sequence formed the upper unit above the brittle upper detachment fault. Mylonitic gneiss and a leucogranite pluton made up the lower unit beneath the ductile lower detachment fault. Mylonitic middle-grade garnet-, staurolite- and andalusite-schist constituted the middle unit between the two faults, which may be that the basal part of the upper unit experienced detachment shear. The Ramba dome underwent three episodes of deformation in its tectonic evolution. The first episode was a top-down-to-north-northwest sliding possibly related to the activity of the south Tibetan detachment system (STDS). The second episode was the dominant deformation related to a east west extension, which resulted in a unique top-down-to-east kinematics and the major tectonic features of the dome. The third episode was a collapse sliding toward the outsides of the dome. The Ramba gneiss dome is possibly a result of the east-west extension and magmatic diapir. The lower detachment fault is probably the main detachment fault separating the sedimentary sequence from the crystalline basement during the eas-west extension in the dominant deformation episode. The diapir of the leucogranite pluton formed the doming shape of the Ramba gneiss dome. This pluton intruded in the core of the dome in a late stage of the dominant deformation, and its Ar-Ar cooling ages are about 6 Myr. This indicates that the dominant deformation of the dome happened at the same time of the east west extension represented by the nort-south trending rifts throughout the northern Himalaya and southern Tibet. Therefore, the formation of the Ramba gneiss dome should be related to this east west extension.  相似文献   

8.
LocatedinthesouthwestborderareaofChina ,theGaoligongrangeisauniquegeologicandgeomor phologicfeature ,withitssnow cappedsummitele vatedupto 35 88mabovesealevel.ItgoesupnorthalongtheNuRivertoeasternTibet ,joiningupwiththeBoshulalingrange ,anddownsouthtotheareaofLongling ,whereitdescendsrapidlyandsplitsupintoseverallowandlinearridges .RespectivelytothewestandeastoftherangearetheTengchongandBaoshanblocks ,themainpartofwhich ,anarrowbeltofin tensivelydeformedmetamorphicrocksnamedGaoligongGroup …  相似文献   

9.
It is generally understood that the Tertiary structural deformation in the Gaoligong range in west Yunnan was under the control of right-lateral shear, resulting from the northward movement of Indian relative to Eurasian. In the southern part of Gaoligong range, however, we have recently found many pieces of evidence of left-lateral shear deformation, featuring a 10 km wide shear zone cutting through all tectonic elements of the range in N-S direction, which possibly occurred in late Tertiary time, and postdated the right-lateral shear. This is a significant discovery for revealing characteristics of the Tertiary intracontinental deformation of the Gaoligong range and the interaction between the Indian and the Eurasian continents.  相似文献   

10.
为了深化准噶尔盆地南缘新生代前构造演化研究,以准噶尔盆地南缘山前齐古断褶带上侏罗统-下白垩统露头剖面为例,利用野外地质调查、二维地震剖面解释、无人机航拍建模,分析上侏罗统和下白垩统地层之间地层接触关系,结合重矿物不稳定系数和地层厚度分布,得出区域不整合的成因,建立准噶尔盆地南缘山前晚侏罗世-早白垩世构造演化模式.结果表明:准噶尔盆地南缘齐古断褶带上侏罗统喀拉扎组和下白垩统清水河组地层之间存在角度不整合,与中-晚侏罗世欧亚板块南缘一系列的碰撞拼合背景下构造变形引起的剥蚀密切相关.自晚侏罗世进入挤压构造背景以来,天山北缘的构造活动经历了由强到弱的过程,强烈的构造抬升使得喀拉扎组沉积范围明显缩小并整体遭受暴露剥蚀,清水河组超覆在喀拉扎组地层之上形成区域不整合.  相似文献   

11.
Evidence of power-law flow in the Mojave desert mantle   总被引:2,自引:0,他引:2  
Freed AM  Bürgmann R 《Nature》2004,430(6999):548-551
Studies of the Earth's response to large earthquakes can be viewed as large rock deformation experiments in which sudden stress changes induce viscous flow in the lower crust and upper mantle that lead to observable postseismic surface deformation. Laboratory experiments suggest that viscous flow of deforming hot lithospheric rocks is characterized by a power law in which strain rate is proportional to stress raised to a power, n (refs 2, 3). Most geodynamic models of flow in the lower crust and upper mantle, however, resort to newtonian (linear) stress-strain rate relations. Here we show that a power-law model of viscous flow in the mantle with n = 3.5 successfully explains the spatial and temporal evolution of transient surface deformation following the 1992 Landers and 1999 Hector Mine earthquakes in southern California. A power-law rheology implies that viscosity varies spatially with stress causing localization of strain, and varies temporally as stress evolves, rendering newtonian models untenable. Our findings are consistent with laboratory-derived flow law parameters for hot and wet olivine--the most abundant mineral in the upper mantle--and support the contention that, at least beneath the Mojave desert, the upper mantle is weaker than the lower crust.  相似文献   

12.
构造变形与地表过程之间关系是近年来的研究热点,并取得了一些进展,特别是在较小空间尺度上的山前褶皱冲断带变形与地表过程耦合关系研究方面,提出了横向河流的切割作用影响背斜构造变形的新认识,改变了构造变形对地表作用单向控制的传统认识.背斜变形样式受地表过程和构造变形共同影响,背斜变形与横向河流切割之间存在双向耦合关系.山前带...  相似文献   

13.
Much attention has been paid in the last two decades to the physical and chemical processes as well as temporal-spatial variations of the lithospheric mantle beneath the North China Craton. In order to provide insights into the geodynamics of this variation, it is necessary to thoroughly study the state and structure of the lithospheric crust and mantle of the North China Craton and its adjacent regions as an integrated unit. Based on the velocity structure of the crust and upper mantle constrained from seismological studies, this paper presents various available geophysical results regarding the lithosphere thickness, the nature of crust-mantle boundary, the upper mantle structure and deformation characteristics as well as their tectonic features and evolution systematics. Combined with the obtained data from petrology and geochemistry, a mantle flow model is proposed for the tectonic evolution of the North China Craton during the Mesozoic-Cenozoic. We suggest that subduction of the Pacific plate made the mantle underneath the eastern Asian continent unstable and able to flow faster. Such a regional mantle flow system would cause an elevation of melt/fluid content in the upper mantle of the North China Craton and the lithospheric softening, which, subsequently resulted in destruction of the North China Craton in different ways of delamination and thermal erosion in Yanshan, Taihang Mountains and the Tan-Lu Fault zone. Multiple lines of evidence recorded in the crust of the North China Craton, such as the amalgamation of the Archean eastern and western blocks, the subduction of Paleo-oceanic crust and Paleo-continental residue, indicate that the Earth in the Paleoproterozoic had already evolved into the plate tectonic system similar to the present plate tectonics.  相似文献   

14.
Focal depth data of earthquakes in Mainland China are processed and analyzed in this paper, as well as the relationship between the focal depths and large-scale tectonic structures. As a basic parameter for earthquakes, focal depth is used to investigate deep environment of seismogenic regions, tectonic backgrounds for concentration and release of seismic energy, the inner crustal deformation and its mechanic features. Depth data of 31282 ML≥2.0 events with 1st class and 2nd class precision in Mainland China from Jan. 1, 1970 to May 31, 2000 are used to get spatial features of earthquakes distributed with depth and to provide average depth for each grid area throughout China. Researches show that the average depth (D-) for all the earthquakes used in this paper is (16±7) km, and (13±6) km and (18±8) km for the events in eastern China and western China, respectively. The area with the deepest focal depth is located in southwest Xinjiang region, near the western and southwestern ends of the Tarim Basin. The focal depth related to large-scale tectonic structures, for instance, = (33±12), (21±10), (14±7), (11±5) and (10±4) km in Tibet plateau block, Xinjiang block, North China, Northeastern China and South China, respectively. The earthquakes are deeper at the bounders of the integrated tectonic blocks, including the southwestern and northern brims of the Tarim Basin, southern brim of the Zhunge'r Basin and that of the Alashan block, as well as the eastern and western sides of the Edos block and the western brim of the Sichuan Basin. The earthquakes at the newly ruptured belts are relatively shallower, for instance, at the southwestern Yunnan seismic belt and the Zhangjiakou-Bohai seismic belt. The mechanic behavior, deformation and features for the crust and mantle structures are also discussed.  相似文献   

15.
The origin of the isotopic signature of Indian mid-ocean ridge basalts has remained enigmatic, because the geochemical composition of these basalts is consistent either with pollution from recycled, ancient altered oceanic crust and sediments, or with ancient continental crust or lithosphere. The radiogenic isotopic signature may therefore be the result of contamination of the upper mantle by plumes containing recycled altered ancient oceanic crust and sediments, detachment and dispersal of continental material into the shallow mantle during rifting and breakup of Gondwana, or contamination of the upper mantle by ancient subduction processes. The identification of a process operating on a scale large enough to affect major portions of the Indian mid-ocean ridge basalt source region has been a long-standing problem. Here we present hafnium and lead isotope data from across the Indian-Pacific mantle boundary at the Australian-Antarctic discordance region of the Southeast Indian Ridge, which demonstrate that the Pacific and Indian upper mantle basalt source domains were each affected by different mechanisms. We infer that the Indian upper-mantle isotope signature in this region is affected mainly by lower continental crust entrained during Gondwana rifting, whereas the isotope signature of the Pacific upper mantle is influenced predominantly by ocean floor subduction-related processes.  相似文献   

16.
采用求解非线性全局优化问题的模拟退火法作为反演手段 ,对面波波形进行反演 ,研究青藏高原地壳上地幔速度结构。通过青藏高原的面波波形振幅谱显示出在周期为 2 0 s和4 0 s时存在两个极小值 ,这可能是由地壳中存在低速层引起的。面波波形反演得到的速度模型也证实了青藏高原在 2 0 km深度左右普遍存在低速层 ;喜马拉雅山造山带在 6 0 km深度附近也存在一低速层。壳内低速层是青藏高原变形及隆升过程最重要的动力学边界条件之一  相似文献   

17.
Suggestion of a dynamic model of North China basin-range system   总被引:2,自引:0,他引:2  
It is found from preliminary studies that previous basin-range models have difficulties in explaining the formation of the Mesozoic North-China basin-range system. This work suggests a new model-"tectonic thermal erosion" model, which considers the North China basin of Late Mesozoic and its peripheral ranges as a unified system, identifies relationship between upwelling and lateral spreading of the asthenolith with horizontal movement and deformation of the upper crust in the system, clarifies the effects of underplating erosion on the crustal evolution, and tries to establish an earth-dynamic model of the North China Mesozoic basin-range supported by numerical simulation.  相似文献   

18.
Lee CT  Yin Q  Rudnick RL  Jacobsen SB 《Nature》2001,411(6833):69-73
Stable continental regions, free from tectonic activity, are generally found only within ancient cratons-the centres of continents which formed in the Archaean era, 4.0-2.5 Gyr ago. But in the Cordilleran mountain belt of western North America some younger (middle Proterozoic) regions have remained stable, whereas some older (late Archaean) regions have been tectonically disturbed, suggesting that age alone does not determine lithospheric strength and crustal stability. Here we report rhenium-osmium isotope and mineral compositions of peridotite xenoliths from two regions of the Cordilleran mountain belt. We found that the younger, undeformed Colorado plateau is underlain by lithospheric mantle that is 'depleted' (deficient in minerals extracted by partial melting of the rock), whereas the older (Archaean), yet deformed, southern Basin and Range province is underlain by 'fertile' lithospheric mantle (not depleted by melt extraction). We suggest that the apparent relationship between composition and lithospheric strength, inferred from different degrees of crustal deformation, occurs because depleted mantle is intrinsically less dense than fertile mantle (due to iron having been lost when melt was extracted from the rock). This allows the depleted mantle to form a thicker thermal boundary layer between the deep convecting mantle and the crust, thus reducing tectonic activity at the surface. The inference that not all Archaean crust developed a strong and thick thermal boundary layer leads to the possibility that such ancient crust may have been overlooked because of its intensive reworking or lost from the geological record owing to preferential recycling.  相似文献   

19.
在区域地质构造研究的基础上,本文以地球动力学的观点系统地分析了中上元古界构造特征和演化。中上元古界构造经历了中晚元古代裂陷谷-坳陷构造发展阶段、古生代和三叠纪升降运动构造发展阶段、侏罗白垩纪强烈活化构造阶段和新生代晚期活化阶段。晚印支运动造成全区挤压构造的基本格局,燕山运动多次拉张和挤压脉动交替使之受到强烈的改造和复杂化。早第三纪同生正断层的张裂活动又使中上元古界大幅度掀斜,甚至使一些构造变成单斜挠曲。东营期末,本区构造最后定型。晚第三纪,本区张裂活动基本停止,南部地区整体下沉。大地构造的演化,特别是中新生代的块断作用及其活化历史对于本区油气藏的形成和保存具有重要的影响,并且是一个控制性的因素。  相似文献   

20.
西藏措勤地区布嘎寺组火山岩是一套钾质到超钾质的岩石,根据化学组成可以分为中酸性和中基性火山岩.在前人研究的基础上对布嘎寺组中基性火山岩进行野外地质调查及全岩地球化学分析,并对该构造背景、源区性质及岩石成因做了进一步的研究和探讨.该火山岩具有轻稀土元素强烈富集、大离子亲石元素和高场强元素不同程度富集、弱负铕异常等地球化学...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号