首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 171 毫秒
1.
在氩气保护下采用电磁感应熔炼制备La0.7Zr0.1Mg0.2Ni3.4-xCoxFe0.1(x=0.15,0.25,0.35,0.45)合金,研究合金的相结构,以及Co元素部分取代Ni元素对合金的气态储氢性能和电化学性能的影响。结果表明,合金主要由LaNi5、LaNi2以及La2MgNi9相组成。合金电极的最大放电容量分别为346.7mAh/g(x=0.15)、320.3mAh/g(x=0.25)、363.0mAh/g(x=0.35)和313.3mAh/g(x=0.45),经过65个充放电循环后,合金电极的容量保持率从63.0%(x=0.15)增加到80.2%(x=0.35),然后再下降到75.0%(x=0.45)。La0.7Zr0.1Mg0.2Ni3.15Co0.25Fe0.1合金具有较高的高倍率放电性能(HRD1200%=67.3)和较大的极限电流密度(IL=386.8 mA/g),显示出其良好的电化学动力学性能。  相似文献   

2.
利用高频感应熔炉制备摩尔比率为75%La(Ni0.85Co0.15)5-x(Mn0.4Al0.3)x+12.5%Mg2Ni(x=0,0.3,0.6)合金,测试合金的储氢性能,分析Mn、Al元素组合对合金储氢性能的影响。结果发现,合金均由多相组成,其中主相分别是CaCu5型的LaNi5相和PuNi3型的(La,Mg)Ni3相。随着元素(Mn,Al)含量增大,合金电极的循环稳定性有一定的改善,80次循环放电容量保持率从x=0时的59.1%提高到x=0.6时的74.5%。  相似文献   

3.
采用电弧炉熔炼方法制备La0.6CexNd0.4-xNi3.0Co0.2Al0.3(x=0~0.4)系列合金,并对合金的储氢性能和电化学性能进行测试。测试结果表明,合金在Ce=0时具有最高的电化学容量(284.2mAh/g)和储氢量(0.93wt%)。Ce的添加会降低合金放电容量,但是能够改善合金的循环稳定性能。  相似文献   

4.
采用放电容量、循环寿命、伏安特性、高倍率放电、交流阻抗等方法研究不同导电剂镍粉含量对La0.7Mg0.3Ni2.6Co0.7合金电极电化学性能的影响。结果表明:La0.7Mg0.3Ni2.6Co0.7+xwt%Ni(x=0.0,5.0,7.5,10.0,12.5)合金电极的放电容量分别为388.0、410.7、409.6、412.2、421.3 mAh/g,高倍率放电性能HRD1200从40.2%(x=0.0)增大到75.7%(x=12.5),同时合金电极的电荷转移阻抗明显降低,添加导电剂镍粉有利于电流在电极中分布趋于均匀化,增大了活性物质的填充量,促使合金电极的放电容量增加。电荷转移阻抗的降低有利于氢原子在合金内部扩散,从而有效地改善合金电极的高倍率放电性能。  相似文献   

5.
采用高频悬浮感应熔炼方法制备(La1-xNdx)2Mg(Ni0.8Co0.15Mn0.05)9(x=0~0.3)系列合金,分析Nd部分取代La对合金的相结构、吸放氢性能和电化学性能的影响.结果表明,铸态合金的主相为具有六方CaCu5结构的LaNi5相,并存在具有立方MgCu2结构的LaNi2相以及LaMg3相.合金主相...  相似文献   

6.
在氩气保护下用悬浮熔炼制备La0.7-xTixMg0.3Ni3.5(x=0.00,0.05,0.10)储氢合金,研究Ti含量对合金电极电化学性能的影响。X射线衍射(XRD)分析表明,合金相主要由LaNi5、LaMg2Ni9和La2Ni3相组成。当x=0.10时,合金中有TiNi3相产生,随着Ti含量的增加,LaNi5、LaMg2Ni9和La2Ni3相的晶胞体积减小。电化学性能测试表明,合金电极最大放电容量分别为370 mAh/g(x=0.00)、331 mAh/g(x=0.05)和252 mAh/g(x=0.10);合金电极循环伏安特性曲线氧化峰电位随着Ti含量的增加而降低,表明Ti的加入使合金电极易于发生氧化反应。  相似文献   

7.
采用高频感应熔炼制备La0.7Ca0.3Ni2.8-xMgx(x=0.1、0.2、0.3、0.4)合金,进行X射线衍射(XRD)实验,气相储氢性能测试和电化学性能测试,分析Mg部分替代Ni对合金的储氢和电化学性能的影响。分析结果表明,合金具有多相结构,当x=0.1、0.3时,合金的主相是CaCu5-型结构的LaNi5相,当x=0.2、0.4时,合金的主相是AB2-型Laves相LaNi2相。随x=0.1、0.2、0.3、0.4合金电极的放电容量(mAh/g)依次为244.7、140.8、257.6、164。当x=0.1时,在2MPa氢压、25℃时,合金La0.7Ca0.3Ni2.7Mg0.1的储氢量达到1.1wt%。  相似文献   

8.
研究了热处理时间对贮氢电极合金La0.7Mg0.3Ni2.45Co0.75Mn0.1Al0.2的微结构与电化学性能的影响。XRD分析结果表明,所有合金均由(La,Mg)Ni3与LaNi5两相构成,热处理并没有使该贮氢合金发生相变。电化学研究结果表明,随着热处理时间的延长,合金电极的最大放电容量与循环稳定性能均得到明显改善,而高倍率放电性能却逐渐恶化。  相似文献   

9.
采用磁悬浮感应熔炼法和快淬法制备了Mm0.3Ml0.7Ni3.55Co0.75Mn0.4Al0.3稀土储氢合金,系统研究了快淬速度对合金微结构和电化学性能的影响.X射线衍射(XRD)及扫描电镜(SEM)分析表明,快淬态合金中出现了新相LaNi3和La2Ni3,且LaNi3和La2Ni3相含量随快淬速度的增大而增大.电化学性能测试表明,合金的放电特性和最大放电容量随快淬速度的增大呈现出先变好后变坏的变化规律,15m/s快淬态合金的放电特性和最大放电容量达到最佳.此外,恰当的快淬速度能明显改善合金的循环稳定性.  相似文献   

10.
用高频感应熔炼方法制备了La0.7Mg0.3-xTixNi2.8Co0.3(x=0.03,0.06,0.09,0.12)系列合金,并对其储氢和电化学性能进行测试.结果表明x=0.06时,合金储氢性能最好,气态储氢容量达1.2wt%,放电容量和比容量分别为336 mA.h.g-1,70.0%.  相似文献   

11.
To improve the electrochemical properties of rare-earth-Mg-Ni-based hydrogen storage alloys, the effects of stoichiometry and Cu-substitution on the phase structure and thermodynamic properties of the alloys were studied. Nonsubstituted Ml0.80Mg0.20(Ni2.90Co0.50-Mn0.30Al0.30)x (x=0.68, 0.70, 0.72, 0.74, 0.76) alloys and Cu-substituted Ml0.80Mg0.20(Ni2.90Co0.50-y Cuy Mn0.30Al0.30)0.70 (y=0, 0.10, 0.30, 0.50) alloys were prepared by induction melting. Phase structure analysis shows that the nonsubstituted alloys consist of a LaNi5 phase, a LaNi3 phase, and a minor La2Ni7 phase; in addition, in the case of Cu-substitution, the Nd2Ni7 phase appears and the LaNi3 phase vanishes. Thermodynamic tests show that the enthalpy change in the dehydriding process decreases, indicating that hydride stability decreases with increasing stoichiometry and increasing Cu content. The maximum discharge capacity, kinetic properties, and cycling stability of the alloy electrodes all increase and then decrease with increasing stoichiometry or increasing Cu content. Furthermore, Cu substitution for Co ameliorates the discharge capacity, kinetics, and cycling stability of the alloy electrodes.  相似文献   

12.
研究(La1-xTix)2MgNi8.25Co0.75(x=0、0.1、0.2)合金的微观结构与电化学性能。相测试结果显示:所有合金都是由(La,Mg)Ni3和LaNi52个主相所构成的,晶胞参数随着Ti的替代而逐渐减小,这是因为Ti的共价键半径(0.132 nm)小于La(0.169 nm)所引起的。电化学测试结果表明:所有的合金电极经过4次活化后都能够达到最大放电容量,且放电容量随着Ti含量的增加而减少,从x=0时的384.6 mAh/g降低到x=0.2时的321.9 mAh/g,合金电极的循环寿命则从x=0时的53.1%提高到x=0.2时的67.8%,合金在1 200 mA/g时的高倍率放电性能先从x=0时的59.3%升高到x=0.1时的66.5%,然后又降低到x=0.2时的63.1%。此外,电化学动力学也显示出先增大后减小的特点。造成以上电化学性能变化的原因是Ti的加入一方面起到了脱氢催化的作用,另一方面使合金表面形成了致密氧化层,虽然阻止了合金进一步的腐蚀,但也降低了合金电极的动力学性能。  相似文献   

13.
为了提出La-Mg-Ni(PuNi3型)系贮氢合金的电化学循环稳定性,在La2Mg(Ni0.85Co0.15)9合金中添加微量的B,用铸造及快淬工艺制备La2Mg(Ni0.85Co0.15)9Bx(x=0,0.05,0.10,0.15,0.20)贮氢合金,分析测试铸态及快淬态合金的微观结构与电化学性能,研究硼对合金微观结构及电化学性能的影响。结果表明:铸态合金具有多相结构,包括主相(La,Mg)Ni3相(PuNi3型)和LaNi5相,一定量的LaNi2相和微量的Ni2B相经快淬处理后,Ni2B相消失,且其他相的相对量随淬速的变化而变化。硼的加入提高了铸态及快淬态合金的循环稳定性,但使铸态合金的容量下降;铸态合金的电化学容量随B含量的增加单调下降,而快淬态合金的容量随B含量的增加有一极大值,B对铸态及快淬态合金电化学性能的影响机理是完全不同的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号