首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Isothermal hot compression tests of as-cast high-Cr ultra-super-critical (USC) rotor steel with columnar grains perpendicular to the compression direction were carried out in the temperature range from 950 to 1250°C at strain rates ranging from 0.001 to 1 s-1. The softening mechanism was dynamic recovery (DRV) at 950°C and the strain rate of 1 s-1, whereas it was dynamic recrystallization (DRX) under the other conditions. A modified constitutive equation based on the Arrhenius model with strain compensation reasonably predicted the flow stress under various deformation conditions, and the activation energy was calculated to be 643.92 kJ·mol-1. The critical stresses of dynamic recrystallization under different conditions were determined from the work-hardening rate (θ)–flow stress (σ) and -?θ/?σ–σ curves. The optimum processing parameters via analysis of the processing map and the softening mechanism were determined to be a deformation temperature range from 1100 to 1200°C and a strain-rate range from 0.001 to 0.08 s-1, with a power dissipation efficiency η greater than 31%.  相似文献   

2.
The dynamic mechanical properties of Fe-30Mn-3Si-4Al twinning induced plasticity (TWIP) steel were studied by the split-Hopkinson pressure bar (SHPB) at temperatures of 298–1073 K and strain rates of 700, 2500, and 5000 s?1. The TWIP steel indicates strain rate hardening effect between 700 and 2500 s?1, but it shows strain rate softening effect between 2500 and 5000 s?1. In addition, the strain rate softening effect enhances with an increase in deformation temperature. After deformation, the microstructures were studied by optical microscopy (OM). It is shown that the deformation bands become more convergence, a part of which become interwoven with an increase in strain rate, and the dynamic recovery and recrystallization are enhanced with an increase in both temperature and strain rate.  相似文献   

3.
The hot deformation behavior of uniform fine-grained GH4720Li alloy was studied in the temperature range from 1040 to 1130℃ and the strain-rate range from 0.005 to 0.5 s?1 using hot compression testing. Processing maps were constructed on the basis of compression data and a dynamic materials model. Considerable flow softening associated with superplasticity was observed at strain rates of 0.01 s?1 or lower. According to the processing map and observations of the microstructure, the uniform fine-grained microstructure remains intact at 1100℃ or lower because of easily activated dynamic recrystallization (DRX), whereas obvious grain growth is observed at 1130℃. Metallurgical instabilities in the form of non-uniform microstructures under higher and lower Zener–Hollomon parameters are induced by local plastic flow and primary γ′ local faster dissolution, respectively. The optimum processing conditions at all of the investigated strains are proposed as 1090–1130℃ with 0.08–0.5 s?1 and 0.005–0.008 s?1 and 1040–1085℃ with 0.005–0.06 s?1.  相似文献   

4.
Hot deformation behaviors of WE71 (Mg–7Y-1Nd-0.5Zr) alloy was investigated by plain strain compression tests conducted at temperatures ranging from 350 °C to 500 °C and strain rates varying from 0.01 s-1 to 10 s-1. Results show that the hot deformation of WE71 was accompanied by the precipitation of rich Zr phase with granular shape and block-shaped phase rich in element Y. When deformed at low temperature and high strain rate, the softening behavior of the alloy was synergically determined by shear bands propagation, adiabatic heating, twinning formation and dynamic recrystallization (DRX). For the conditions of high temperature and high strain rate, DRX was the major softening mechanism while the formation and annihilation of extension twinning resulted in a special flow curve characteristic at the strain of around 0.3. According to the microstructural observations, it can be concluded that the irregular flow curves of WE71 alloy during plain strain compression process are mainly ascribed to shear bands propagation, adiabatic heating, twinning formation and DRX.  相似文献   

5.
Dynamic compression tests under strain rates from 870 s?1 to 2100 s?1 were conducted for a near α Ti–8Al–1Mo–1V titanium alloy with equiaxed microstructure. Compression behavior, adiabatic shearing and band microstructure were investigated via characterization and calculation. The results demonstrate that all dynamic constitutive curves exhibited obvious stress fluctuation phenomenon with double increase-decrease changing stages at the primary stage of compression. The dislocation multiplication theory can be used to explain this phenomenon. After the stress fluctuation period, work hardening coexisted with the thermal softening, resulting in the slow hardening tendency in constitutive curves. J-C model was utilized to quantify the dynamic constitutive curves. The deviations between the predicted and experimental curves under high strain rates may be attributed to the over-consideration of thermal softening effect in J-C model. Adiabatic shearing band (ASB) began to form under the strain rate of 2100 s?1. A total shearing strain of 8.1 within ASB achieved in 8.9 μs, corresponding to a local strain rate of about 9.1 × 105 s?1 and is over 430 times of the macro strain rate. Post annealing was conducted on ASB before EBSD characterization. Due to the static recrystallization during annealing, the α phase within ASB generally presented as ultra-fine grains less than 1 μm in diameter.  相似文献   

6.
The hot deformation behavior and microstructures of Al-7055 commercial alloy were investigated by axisymmetric hot compression at temperatures ranging from 300℃ to 450℃ and strain rates from 10-2 to 10 s-1, respectively. Microstructures of deformed 7055 alloy were investigated by transmission electron microscopy (TEM). The dependence of peak stress on deformation temperature and strain rate can be expressed by the hyperbolic-sine type equation. The hot deformation activation energy of the alloy is 146 kJ/mol. Moreover, the flow stress curves predicted by the modified constitutive equations are reasonably consistent with the experimental results, which confirms that the proposed deformation constitutive equations can provide evidence for the selection of hot forming parameters. TEM results indicate that dynamic recovery is the main softening mechanism during hot deformation.  相似文献   

7.
The hot deformation behavior of the as-cast Ti–48Al–2Cr–2Nb alloy was investigated by isothermal compression tests at deformation temperatures ranging from 1000℃ to 1200℃,and strain rates from 0.001 s~(-1)to 0.1 s~(-1).The single peak stress features common to all flow curves indicate that DRX is the dominating softening mechanism.The calculated values of the hot deformation activation energy Q and stress index n are 296.5 kJ mol~(-1)and 3.97,respectively.Based on this,the Arrhenius type constitutive equation was successfully established.The DRX critical condition model and relationship among DRX volume fractions,deformation temperatures and strain rates were obtained to optimize the process.Combined with microstructure analysis,it's concluded that 1200℃/0.01s~(-1)is the optimization parameter.Besides,both DDRX and CDRX were observed in theγphase evolution.The deformation mechanism from the inter-grain dislocation motion to the grain boundary migration and grain rotation was discussed.  相似文献   

8.
In this study, the hyperbolic-sine type constitutive equation was used to model the flow stress of annealed AZ61 magnesium(Mg) alloys. Hot compression tests were conducted at the temperatures ranging from 250 1C to 450 1C and at the strain rates ranging from 1 10–3s 1to 1 s 1on a Gleeble-3500 thermo-simulation machine. Constitutive equations as a function of strain were established through a simple extension of the hyperbolic sine constitutive relation. The effects of annealing heat treatments on the variations in constitutive parameters with strain were discussed. The hot compressive flow curves exhibited typical features of dynamic recrystallization. Multiple peak flow curves were observed in the annealed specimens upon testing at a strain rate of 1 10 1s–1and at various temperatures. Variations in constitutive parameters with strain were related to flow behavior and dependent on the initial conditions of the test specimens. The flow stresses of annealed AZ61 Mg alloys were predicted well by the strain-dependent constitutive equations of the hyperbolic sine function under the deformation conditions employed in this study.  相似文献   

9.
Single- and two-step hot compression experiments were carried out on 16Cr25Ni6Mo superaustenitic stainless steel in the temperature range from 950 to 1150℃ and at a strain rate of 0.1 s-1. In the two-step tests, the first pass was interrupted at a strain of 0.2; after an interpass time of 5, 20, 40, 60, or 80 s, the test was resumed. The progress of dynamic recrystallization at the interruption strain was less than 10%. The static softening in the interpass period increased with increasing deformation temperature and increasing interpass time. The static recrystallization was found to be responsible for fast static softening in the temperature range from 950 to 1050℃. However, the gentle static softening at 1100 and 1150℃ was attributed to the combination of static and metadynamic recrystallizations. The correlation between calculated fractional softening and microstructural observations showed that approximately 30% of interpass softening could be attributed to the static recovery. The microstructural observations illustrated the formation of fine recrystallized grains at the grain boundaries at longer interpass time. The Avrami kinetics equation was used to establish a relationship between the fractional softening and the interpass period. The activation energy for static softening was determined as 276 kJ/mol.  相似文献   

10.
The hot compression behavior of AISI 321 austenitic stainless steel was studied at the temperatures of 950–1100℃ and the strain rates of 0.01–1 s?1 using a Baehr DIL-805 deformation dilatometer. The hot deformation equations and the relationship between hot deformation parameters were obtained. It is found that strain rate and deformation temperature significantly influence the flow stress behavior of the steel. The work hardening rate and the peak value of flow stress increase with the decrease of deformation temperature and the increase of strain rate. In addition, the activation energy of deformation (Q) is calculated as 433.343 kJ/mol. The microstructural evolution during deformation indicates that, at the temperature of 950℃ and the strain rate of 0.01 s?1, small circle-like precipitates form along grain boundaries; but at the temperatures above 950℃, the dissolution of such precipitates occurs. Energy-dispersive X-ray analyses indicate that the precipitates are complex carbides of Cr, Fe, Mn, Ni, and Ti.  相似文献   

11.
The hot deformation characteristics of 1.4462 duplex stainless steel (DSS) were analyzed by considering strain partitioning between austenite and ferrite constituents. The individual behavior of ferrite and austenite in microstructure was studied in an iso-stress condition. Hot compression tests were performed at temperatures of 800–1100℃ and strain rates of 0.001–1 s?1. The flow stress was modeled by a hyperbolic sine constitutive equation, the corresponding constants and apparent activation energies were determined for the studied alloys. The constitutive equation and law of mixture were used to measure the contribution factor of each phase at any given strain. It is found that the contribution factor of ferrite exponentially declines as the Zener-Hollomon parameter (Z) increases. On the contrary, the austenite contribution polynomially increases with the increase of Z. At low Z values below 2.6.×1015 (lnZ=35.5), a negative contribution factor is determined for austenite that is attributed to dynamic recrystallization. At high Z values, the contribution factor of austenite is about two orders of magnitude greater than that of ferrite, and therefore, austenite can accommodate more strain. Microstructural characterization via electron back-scattered diffraction (EBSD) confirms the mechanical results and shows that austenite recrystallization is possible only at high temperature and low strain rate.  相似文献   

12.
利用MMS-300热模拟试验机,对20Mn2SiV非调质钢在变形温度为900~1 100℃及应变速率为0.01~10s-1条件下的流变应力进行了研究,讨论了Z参数与动态再结晶之间的关系,并建立了该钢的热变形流变应力模型.结果表明:采用Z参数可以判断动态再结晶发生与否,当lnZ≤32.76时,20Mn2SiV非调质钢发生动态再结晶;根据动态再结晶发生与否以及应变是否达到动态再结晶临界应变值,分别建立了不同情况下的流变应力模型,模型拟合效果良好.  相似文献   

13.
The medium and warm deformation behaviors of an indirect-extruded Mg-8Sn-1Al-1Zn alloy were investigated by compression tests at temperatures between 298 and 523 K and strain rates of 0.001–10 s?1. It was found that the twinning-slip transition temperature was strain rate dependent, and all the true stress-true strain curves could be divided into two groups: concave and convex curves. Associated microstructural investigations indicated that the dynamic recrystallization (DRX) behavior of the alloy varied with deformation conditions. At high strain rate and low temperature, dynamically recrystallized grains preferentially nucleated and developed in the twinned regions, indicating that twinning-induced DRX was dominant. While, at low strain rate, DRX developed extensively at grain boundaries and twins, and the process of twinning contributed to both oriented nucleation and selective growth. For the studied alloy, cracks mainly initiated from the shear band and twinning lamellar over the ranges of temperature and strain rate currently applied.  相似文献   

14.
A high Nb containing TiAl alloy was prepared from the pre-alloyed powder of Ti-45Al-8.5Nb-0.2B-0.2W-0.02Y (at%) by spark plasma sintering (SPS). Its high-temperature mechanical properties and compressive deformation behavior were investigated in a temperature range of 700 to 1050℃ and a strain rate range of 0.002 to 0.2 s-1. The results show that the high-temperature mechanical properties of the high Nb containing TiAl alloy are sensitive to deformation temperature and strain rate, and the sensitivity to strain rate tends to rise with the deformation temperature increasing. The hot workability of the alloy is good at temperatures higher than 900℃, while fracture occurs at lower temperatures. The flow curves of the samples compressed at or above 900℃ exhibit obvious flow softening after the peak stress. Under the deformation condition of 900-1050℃ and 0.002-0.2 s-1, the interrelations of peak flow stress, strain rate, and deformation temperature follow the Arrhenius' equation modified by a hyperbolic sine function with a stress exponent of 5.99 and an apparent activation energy of 441.2 kJ·mol-1.  相似文献   

15.
The hot deformation behaviors of GH4706 alloy were investigated using compression tests in a deformation temperature range from 900℃ to 1200℃ with a strain rate range of 0.001–1 s?1. Hot processing maps were developed on the basis of the dynamic material model and compression data. A three-dimensional distribution of power dissipation parameter (η) with strain rate and temperature reveals that η decreases in sensitivity with an increase in strain rate and a decrease in temperature. Microstructure studies show that the grain size of GH4706 alloy increases when η is larger than 0.32, and the microstructure exhibits local deformation when η is smaller than 0.23. The hot processing map at the strain of 0.7 exposes a domain peak at η=0.32 for the temperature between 940℃ and 970℃ with the strain rate from 0.015 s?1 to 0.003 s?1, and these are the optimum parameters for hot working.  相似文献   

16.
The hot deformation behavior of GH909 superalloy was studied systematically using isothermal hot compression tests in a temperature range of 960 to 1040℃ and at strain rates from 0.02 to 10 s-1 with a height reduction as large as 70%. The relations considering flow stress, temperature, and strain rate were evaluated via power-law, hyperbolic sine, and exponential constitutive equations under different strain conditions. An exponential equation was found to be the most appropriate for process modeling. The processing maps for the superalloy were constructed for strains of 0.2, 0.4, 0.6, and 0.8 on the basis of the dynamic material model, and a total processing map that includes all the investigated strains was proposed. Metallurgical instabilities in the instability domain mainly located at higher strain rates manifested as adiabatic shear bands and cracking. The stability domain occurred at 960-1040℃ and at strain rates less than 0.2 s-1; these conditions are recommended for optimum hot working of GH909 superalloy.  相似文献   

17.
采用Gleeble-1500D热模拟试验机对Cu-Cr-Zr-Ag合金进行热压缩试验,研究了Cu-Cr-Zr-Ag合金在不同应变速率和变形温度的流变应力行为、微观组织演变和动态再结晶机制,利用光学显微镜(OM)研究了Cu-Cr-Zr-Ag合金的压缩速率、形变温度对合金微观织构的影响.结果表明:在压缩速率为0.001~10 s-1的区间内,Cu-Cr-Zr-Ag合金存在近稳态流变特征,即流变应力随温升及压缩速率的降低而变小.形变温度越高,越能促使再结晶形核,压缩速率越低,越利于动态再结晶充分发生.  相似文献   

18.
The effect of processing parameters on the flow response and microstructural evolution of the α+β titanium alloy Ti-6.5Al-3.5Mo-1.5Zr-0.3Si has been studied by conducting isothermal hot compressive tests at a strain rate of 0.01–10 s-1 at 860–1100℃. The true stress-true strain curves of the sample hot-compressed in the α+β phase region exhibit a peak stress followed by continuous flow softening, whereas in the β region, the flow stress attains a steady-state regime. At a strain rate of 10 s-1, the alloy exhibits plastic flow instabilities. According to the kinetic rate equation, the apparent activation energies are estimated to be about 674–705 kJ/mol in the α+β region and 308–335 kJ/mol in the β region, respectively. When deformed in the α+β region, the globularization process of the α colony structure occurs, and α dynamic recrystallized microstructures are observed to show bimodal. Dynamic recrystallization can take place in the β region irrespective of starting deformed structures.  相似文献   

19.
22CrS齿轮钢变形奥氏体动态再结晶行为及组织演变   总被引:1,自引:0,他引:1  
采用Gleeble1500热模拟试验机研究了一种新型Mn Cr系齿轮钢在变形量为70%,变形速率为0.1~1s-1,变形温度为850~1150℃,原始奥氏体晶粒尺寸为70~150μm条件下的动态再结晶行为及再结晶后奥氏体晶粒尺寸的变化规律·研究结果表明:在一定的变形量下,变形速率、变形温度、奥氏体晶粒尺寸是影响再结晶的3个因素,只有变形条件Z小于上临界值Zc时才会发生动态再结晶·再结晶后奥氏体晶粒尺寸 D是由变形条件Z惟一地决定而与原始奥氏体晶粒大小无关,Z增加, D减小,二者符合关系式Z=A D-3.91·  相似文献   

20.
The effect of cooling rate on the magnetic properties of the Fe53Nd37Al10 alloy prepared by different methods, i.e., suction casting and melt spinning at different rates, was investigated. The Fe53Nd37Al10 ribbon at the wheel speed of 5 m·s?1 exhibits the highest coercivity in the samples. Two hard magnetic phases are detected from the hysteresis loops of the 5 m·s?1 ribbon at all temperatures below room temperature. Their appearance is associated with different exchange coupling interactions, which are between the two kinds of hard magnetic phases or between the hard magnetic phase and the soft magnetic phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号