首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 470 毫秒
1.
37Mn5钢高温变形抗力模型及动态再结晶动力学模型研究   总被引:2,自引:2,他引:0  
通过Gleeble热模拟试验获得不同变形条件下37Mn5钢的应力应变试验数据,采用不同模型对试验数据进行回归,找到适合37Mn5钢高温变形时的变形抗力模型.同时,通过计算得到了该钢的动态再结晶动力学方程和动态再结晶体积分数表达式.将以上模型的计算值与实测值进行比较,结果表明,计算值与实测值非常接近.  相似文献   

2.
在Gleeble-3800热模拟试验机上利用双道次热压缩实验,研究新型节镍奥氏体耐热不锈钢21Cr-11Ni-N-RE在变形温度950~1 150℃、应变速率0.1~10 s-1,道次间保温时间为0.5~30 s的亚动态再结晶行为。建立亚动态再结晶的动力学模型,并将预测值与试验值进行比较。研究结果表明:试验钢易发生亚动态再结晶,随着道次间保温时间的延长、应变速率的增大和变形温度的升高,材料亚动态再结晶体积分数迅速增大;预应变超过峰值应变后,应变继续增大对亚动态再结晶体积分数的影响十分有限。21Cr-11Ni-N-RE耐热不锈钢的亚动态再结晶激活能Qmdrx为130.417 k J/mol,模型预测值与试验值吻合较好。  相似文献   

3.
通过热压缩实验得出温度在300~450℃,应变率为0.01~1 s-1时的应力-应变曲线,建立了AZ31镁合金的动态再结晶模型。该模型用于AZ31镁合金无缝管挤压过程中动态再结晶过程的数值模拟,并通过金相观察得以实验验证。结果表明,在挤压速度确定的情况下,挤压温度对动态再结晶分数的影响最为明显。随着挤压温度的升高,动态再结晶体积分数明显增大。预测的动态再结晶体积分数与实验结果吻合。  相似文献   

4.
为研究高强钢300M静态再结晶行为,采用Gleeble-3800型热模拟试验机对300M钢进行单/双道次热压缩试验.通过双道次热压缩试验分析了变形温度、应变速率、变形量和初始晶粒尺寸对静态再结晶体积分数的影响.变形温度越高,应变速率越大,变形量越大,初始晶粒尺寸越小,则静态再结晶体积分数越大.其中变形温度、变形量和应变速率对静态再结晶体积分数影响较大,初始晶粒尺寸的影响相比较小.基于双道次热压缩试验结果建立了300M钢的静态再结晶体积分数模型,基于单道次热压缩试验结果建立了300M钢完全静态再结晶晶粒尺寸模型,并验证了静态再结晶体积分数模型的正确性.  相似文献   

5.
采用单道次压缩实验和阶梯试样热轧-淬火实验研究了低成本的Ti微合金化汽车大梁钢510L的动态再结晶行为.结果表明,应变速率为0.1s-1时,变形温度为850~1050℃时均发生动态再结晶,应变速率为0.2s-1时,只有在变形温度高于950℃时发生动态再结晶.变形温度的升高和变形量的增大会逐渐细化奥氏体晶粒,并使再结晶体积分数趋于增大.回归得到实验钢的动态再结晶激活能仅为211.43kJ/mol,说明Ti的添加几乎没有抑制高温奥氏体的动态再结晶,并建立了动态再结晶临界应变模型和动力学模型.  相似文献   

6.
利用Gleeble-1500热模拟试验机对Mn-Nb-Cu-B低碳贝氏体钢进行单道次压缩实验,研究其在温度为1 000~1 150℃和应变速率为0.01~0.1 s-1条件下的动态再结晶行为.通过加工硬化率和应变的关系曲线确定该贝氏体钢发生动态再结晶的临界条件,并建立动态再结晶临界应变模型和峰值应变模型.根据应力-应变曲线数据确定不同变形条件下该贝氏体钢的动态再结晶的体积分数,并利用该体积分数建立动态再结晶动力学模型.研究结果表明:Mn-Nb-Cu-B低碳贝氏体钢高温变形存在动态再结晶现象,且随着变形温度的升高,应变速率的降低,动态再结晶临界应变量减小,更容易发生动态再结晶.采用回归法确定该贝氏体钢的动态再结晶激活能为328 kJ/mol,并获得该贝氏体钢的热加工方程.该低碳贝氏体钢发生动态再结晶的临界应变与峰值应变的平均比值εc/εp为0.63.  相似文献   

7.
采用单道次压缩实验研究了一种低Ni,Cr,Cu和Mo高性能桥梁钢的动态再结晶行为.同时,采用9次多项式对实测真应力-真应变曲线进行了拟合,消除了实测曲线上的波动,进而确定了不同条件下的加工硬化率-真应力曲线.加工硬化率-真应力曲线特征表明,在所研究的不同热压缩变形工艺条件下,均发生了动态再结晶.通过计算将常数α修正为0009MPa-1,得到了实验钢的动态再结晶激活能,确定了εc=063εp关系式,建立了动态再结晶临界应变模型.而且降低Ni,Cr,Cu和Mo含量将显著降低动态再结晶激活能.  相似文献   

8.
热变形行为的研究对材料动态再结晶发生的判断以及热加工工艺参数的制定具有很重要的理论参考价值。对Fe-Mn-Al-C钢进行单道次压缩变形实验,利用Gleeble-3500热模拟试验机完成,变形温度为1 123~1 373 K,应变速率为0.01,0.1,1,10 s-1,测定真应力-真应变曲线,结合变形组织分析不同变形条件对动态再结晶的影响,建立热变形本构方程。结果表明:变形温度越高,应变速率越低,越有利于动态再结晶的进行;实验用钢的热变形激活能和表观应力指数分别为343.351 k J/mol和4.683,本构方程为ε=3.926 2×10~(13)[sinh(0.006σ)]~(4.6830)exp(-343.35/8.314T)  相似文献   

9.
通过单道次压缩试验,对Fe-Mn-C系孪生诱导塑性钢(TWIP钢),在800~1 000℃,应变速率0.01~10.0 s-1条件下的热变形行为及组织演变规律进行了研究.实验结果表明,升高温度和降低应变速率均可促进奥氏体发生动态再结晶.根据实验所得流变应力曲线,由热变形方程计算得到了TWIP钢热变形激活能Q=421.37 kJ/mol.并在此基础上得到了TWIP钢高温变形的热加工方程.采用Z参数预测了动态再结晶的临界条件,当Z≤9.94×1018时TWIP钢易发生动态再结晶,具有较好的热加工性能.  相似文献   

10.
采用Gleeble-3800热模拟试验机研究工程机械用Q1100钢在变形温度为850~1 200℃、应变速率为0.01~10.00 s~(-1) 条件下的热变形行为,建立恒定应变与应变补偿的Arrhenius本构方程。研究结果表明:随着变形温度升高、应变速率减小,Q1100钢的流变应力降低,真应力-真应变曲线发生由动态回复型到动态再结晶型的转变;随应变增加,参数α和n先减小后趋于平缓,Q和ln A先减小后增大,其六次多项式拟合效果较好,相关系数R均在0.98以上;流变应力预测值与实验值的相关系数为0.992 66,绝对误差在15MPa内的数据点有92.13%,平均相对误差为5.25%,验证了模型的准确性。  相似文献   

11.
Q420钢热变形行为及流变应力模型研究   总被引:3,自引:1,他引:2  
利用Gleeble-2000热模拟实验装置对Nb,V微合金化Q420高强度低合金钢(HSLA)进行了高温单道次压缩实验.研究了变形条件对该钢的动态再结晶行为的影响,并建立了一系列完整的描述高温变形的流变应力模型.实验结果表明:动态再结晶只在较高变形温度和低应变速率下发生,且峰值应力、稳态应力、峰值应变和临界应变与lnZ呈线性关系;流变应力预测模型和实验结果吻合良好.  相似文献   

12.
0.95C—18W—4Cr—1V高速钢动态再结晶的数学模型   总被引:7,自引:1,他引:6  
应用GLEEBLE-1500热模拟试验机测量了0.95C-18W-4Cr-1V高速钢的应力-应变曲线,由此得到加工硬化率-应变关系曲线,从而确定发生动态再结晶后的稳态应变εs.稳态应变随着变形温度的升高和应变速率的降低而下降;且随着应变速率的增加,温度的变化对稳态应变的影响逐渐减小.Zener-Holloman参数Z的变化对动态再结晶的临界应变影响较小,而对稳态应变的影响较大.回归分析得到0.95C-18W-4Cr-1V高速钢的动态再结晶的晶粒尺寸和体积分数的数学模型  相似文献   

13.
利用 Gleeble-1500D 热模拟试验机对316LN 奥氏体不锈钢进行单道次热压缩试验,分别设置变形温度为900~1200℃、应变速率为0. 001~10 s-1、真应变为0. 1~0. 9及试样的初始晶粒度为122~297μm之间,以研究热变形条件及初始晶粒度对316LN钢动态再结晶行为的影响. 对试验数据进行处理,得到临界应变与峰值应变以及临界应力与峰值应力的比值分别为0. 38和0. 89,建立了动态再结晶动力学方程和晶粒尺寸演变方程. 对建立的动态再结晶模型进行修正,将修正后的模型嵌入DEFORM-3D有限元模拟软件中进行计算,发现修正模型的模拟值和试验值符合较好,证明修正模型的准确性.  相似文献   

14.
利用MMS-300热模拟实验机对9Ni钢进行了温度范围为800~1150℃、应变速率范围为0.05~1s-1的单道次压缩实验.通过应力-应变曲线研究了9Ni钢的动态再结晶规律,采用硬化率-应力(θ-σ)曲线较精确地确定了动态再结晶的临界条件和峰值应力应变.采用回归法确定了双曲线本构方程中的材料常数和动态再结晶激活能(269kJ/mol),并建立了临界应变、峰值应变和峰值应力与无量纲参数Z/A之间的关系.利用Avrami方程和应力应变曲线建立了9Ni钢动态再结晶动力学模型.  相似文献   

15.
系统研究了1215钢的热变形行为,分析了应变、应变速度和温度对钢的流变应力的影响规律.通过热模拟实验,研究分析了不同的应变速率和应变温度条件下1215钢的应力-应变曲线.以实验数据为基础,以Johnson-Cook本构模型为依据,讨论了拟合分析Johnson-Cook方程参数的方法.通过实验数据的拟合分析,得到了表达1215钢流变应力随应变、应变速度和形变温度的数学方程,为研究1215钢的动态应力-应变行为提供了基础.研究工作表明,理论计算与实验数据得到了较好的吻合.  相似文献   

16.
为了使新型高强钢更好地在冲击领域得到应用,采用等温盐浴方法对新型高强度钢进行热处理.通过OM、SEM、TEM对材料的微观组织进行观察,采用万能试验机对材料进行准静态拉伸力学性能测试,通过分离式霍普金森压杆(SHPB)对材料进行动态性能测试并捕捉临界应变率下萌生发展的绝热剪切带形貌.研究结果表明:随着等温温度的升高,对应材料的主要组织由马氏体+下贝氏体,马氏体+下贝氏体+上贝氏体变化为马氏体+上贝氏体,材料的屈服强度和塑性逐渐降低.330℃等温处理的材料绝热剪切带萌生的临界应变率为3种等温处理材料中最低,上贝氏体组织的出现使材料对绝热剪切变形的敏感性降低.   相似文献   

17.
通过单道次压缩热模拟实验,在MMS-200热模拟实验机上测定了EH36船板钢的应力-应变曲线,研究了变形温度、变形速率和应变对实验钢动态再结晶行为的影响,并建立了实验钢的动态再结晶/变形抗力模型.结果表明,变形温度越高,应变速率越低,应变量越大,越有利于动态再结晶的发生;计算出的动态再结晶激活能和变形抗力与实测值吻合良好,证明了模型的正确性.  相似文献   

18.
通过高温压缩试验研究齿轮钢SAE8620H在950~1100℃、应变速率0.01~10 s-1条件下的高温变形行为.该合金钢的流动应力符合稳态流变特征,流变应力随变形温度升高以及应变速率降低而减小,其本构方程可以采用双曲正弦方程来描述.基于峰值应力、应变速率和温度相关数据推导出SAE8620H高温变形激活能Q=280359.9 J·mol-1.根据变形量40%和60%下应力构建该齿轮钢的热加工图,通过热加工图中耗散值及流变失稳区确定其热变形工艺参数范围. SAE8620H钢在在变形程度较小时宜选取低的应变速率进行成形,而在变形程度大时则要选取低温低应变速率或者高温高应变速率.  相似文献   

19.
采用有限元软件ANSYS/LS-DYNA模拟水介质爆炸容器在不同TNT当量炸药于容器中心处爆炸时的动态响应,并与实测数据进行比较。结果表明,容器筒体爆心环面处的应变幅值在第一个周期内就达到最大值,并且其值大于筒体上其他点的最大应变;在容器椭圆封头处出现应变增长现象,封头顶端的最大主应变峰值大于筒体爆心环面处的应变峰值,且封头顶端的加速度峰值也明显大于爆心环面处的加速度峰值,仿真计算值与实测值吻合较好。在设计同类水介质爆炸容器时,应重点加强筒体爆心环面处和封头顶端。  相似文献   

20.
应用现代激光技术动态全息照相、错位散斑照相和摆锤撞击纯弯梁加载以及改进的分离式霍布金斯压杆对于几种合金钢在高温下的动态力学性能进行测定.介绍了实验装置以及数据处理技术。实验数据的分析表明:温度、应变率对金属材料的力学性能具有较大的影响。文章还讨论了变形的微观原因,以及进一步利用金属动力学性能的可能性和新测试技术的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号