首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
通过单道次压缩实验,研究了屈服强度390 MPa级Ti微合金化高强钢的热变形行为,并建立了实验钢的变形抗力模型和动态再结晶数学模型.结果表明:随着变形温度的降低,变形抗力逐渐增大;随着应变速率的增大,应力-应变曲线由动态再结晶型转变为动态回复型.Q390钢的动态再结晶激活能为257.142 k J/mol.建立的高精度的数学模型可表征Ti微合金化Q390钢的高温变形行为.与常规成分体系相比,Ti微合金化成分设计的实验钢轧制时所需的轧制力较小,更容易发生动态再结晶,有利于奥氏体晶粒的细化,可有效地提高钢材强韧性.  相似文献   

2.
通过高温压缩热模拟实验,研究了50Mn18Cr4V高锰无磁钢在变形温度为900~1100℃、应变速率为01~10s-1条件下的热变形行为.结果表明,VC第二相的应变诱导析出对50Mn18Cr4V的热变形行为产生重要影响.当变形温度为900~1000℃,应变速率为5s-1时,VC第二相不能充分析出,与应变速率为1s-1相比,对动态再结晶的阻碍作用减弱.应尽量使实验钢在高温段完成热加工,并适当提高应变速率.随着变形温度降低到950℃以下,材料的塑性变差,若以较低的应变速率变形,容易造成晶界开裂;应变速率过高,容易造成流变失稳,因此,以5s-1的应变速率变形,较为适宜.确定了50Mn18Cr4V无磁钢的再结晶激活能为7769kJ/mol.通过实验数据回归,建立了实验钢的高温变形抗力模型.  相似文献   

3.
利用MMS-300热模拟试验机开展单道次压缩实验和光学显微组织观察,研究了S38MnSiV非调质钢在温度为1173~1423K及应变速率为001~10s-1条件下的热变形行为,获得了应变速率和变形温度对该钢动态再结晶行为及组织的影响规律,按照双曲正弦方法确定了实验钢的热变形激活能和本构方程.结果表明:变形温度越高,应变速率越低,越有利于动态再结晶的发生;随着动态再结晶的进行,奥氏体平均晶粒尺寸随应变的增加逐渐减小;当应力达到稳态时,奥氏体晶粒尺寸不再随应变而发生变化.  相似文献   

4.
采用Gleeble-1500热/力模拟试验机进行压缩试验,研究了不同变形条件下微量稀土对T91耐热钢动态再结晶行为的影响.分析绘制了稀土加入前后实验钢的真应力–真应变曲线、再结晶–温度–时间图、再结晶图及功率耗散图,并计算了高温下实验钢的再结晶激活能.在变形温度为850~1100℃,变形速率为0.004~10 s 1变形条件下,变形温度越高和变形速率越低,动态再结晶越容易发生.稀土加入会产生固溶强化,稀土元素与碳原子发生交互作用,且在晶界处或晶界附近偏聚,使变形抗力与峰值应变均增大,再结晶激活能由354.6 kJ.mol 1提高到397.2 kJ.mol 1.另外,稀土会显著推迟再结晶发生时间,扩大再结晶的时间间隔,推迟再结晶动力学过程.  相似文献   

5.
根据30CrMo钢的热模拟实验数据,建立了基于动态再结晶物理机制的位错密度、形核率及晶粒长大模型,并采用元胞自动机(CA)方法模拟了30CrMo钢在不同温度及应变速率下的微观组织演变规律。结果显示,通过CA方法模拟得到30CrMo钢的流变应力曲线及平均晶粒尺寸均与实验值吻合较好,所建模型的有效性和准确性得到验证。当应变速率一定时,变形温度越高越利于动态再结晶的充分进行,稳态下晶粒尺寸相对较大;而当变形温度一定时,高应变速率条件下材料的形核率较大,再结晶晶粒较细小。  相似文献   

6.
含Nb微合金钢动态再结晶行为   总被引:1,自引:1,他引:1  
用Gleeble-2000热模拟实验机对实验钢进行高温单道次压缩实验,研究了实验钢动态再结晶行为.实验结果表明:实验钢动态再结晶激活能为304.711 kJ/mol;在较高温度和低应变速率条件下实验钢易于发生动态再结晶,随着lnZ的减小,实验钢应力-应变曲线由动态回复型变为动态再结晶型;当lnZ<22.61时,曲线上出现多个峰值,呈间断式动态再结晶型;峰值应力、峰值应变和临界应变与lnZ呈线性关系;动态再结晶开始时间随着应变速率的增大和温度的升高而缩短.  相似文献   

7.
Q420钢热变形行为及流变应力模型研究   总被引:3,自引:1,他引:2  
利用Gleeble-2000热模拟实验装置对Nb,V微合金化Q420高强度低合金钢(HSLA)进行了高温单道次压缩实验.研究了变形条件对该钢的动态再结晶行为的影响,并建立了一系列完整的描述高温变形的流变应力模型.实验结果表明:动态再结晶只在较高变形温度和低应变速率下发生,且峰值应力、稳态应力、峰值应变和临界应变与lnZ呈线性关系;流变应力预测模型和实验结果吻合良好.  相似文献   

8.
通过在Gleeble-1500热,力模拟实验机上的热压缩实验,对SWRH82B钢奥氏体动态再结晶规律进行实验研究,分析了变形条件对其动态再结晶行为的影响.结果表明,变形的温度、变形速率均对SWRH82B钢的动态再结晶有影响.获得了实验钢的动态再结晶激活能及动态再结晶数学模型.  相似文献   

9.
利用Gleeble-1500热模拟实验机研究Q235钢连铸坯CSP轧制时在高温变形过程中的动态再结晶行为.结果表明,在高变形温度和低应变速率条件下Q235钢易发生动态再结晶;在回归相应的数学模型后,建立了Q235钢的热变形方程式.对Q235钢连铸坯热变形后的组织进行分析,发现奥氏体发生动态回复后转变的铁素体组织中也有动态再结晶晶粒.  相似文献   

10.
利用Gleeble 1500热模拟实验机进行单轴压缩实验,研究了工业纯铁和两种不同含碳量的低碳钢在700℃、不同应变速率条件下的热变形行为.实验结果表明,变形组织中的珠光体对铁素体动态再结晶行为具有重要影响,即增加钢中珠光体含量,可以促进铁素体动态再结晶过程的发生和发展,使得可以发生铁素体动态再结晶的应变速率范围变宽.  相似文献   

11.
采用Gleeble-3500热模拟试验机对X100管线钢进行单道次压缩试验,研究其变形抗力与应变量、应变速率和变形温度的关系,利用回归分析确立合适的变形抗力数学模型,并将模型预测值与试验值进行比较。结果表明,变形温度对X100管线钢变形抗力影响显著;高温低应变速率更有利于X100管线钢回复和再结晶的发生;应变速率过高会引起非稳态变形,不利于X100管线钢轧制过程的控制;利用回归分析确定的变形抗力模型能够准确预测X100管线钢的变形抗力,相关系数为0.986。  相似文献   

12.
Q550D超低碳贝氏体钢的微观组织模拟   总被引:1,自引:1,他引:0  
摘要: 利用Q550D超低碳贝氏体钢的热压缩试验数据建立了动态再结晶模型及元胞自动机模型,通过有限元软件DEFORM 3D对试样热变形过程的微观组织演变过程进行了模拟.结果表明:在变形温度为1 150 °C条件下,当应变速率为0.05 s-1时,热变形过程中的试样微观组织发生了动态再结晶现象,晶粒尺寸得到细化;在变形温度为1 050 °C条件下,当应变速率不断增大时,奥氏体动态再结晶的晶粒尺寸减小;模拟结果与试验结果较吻合.  相似文献   

13.
采用单道次压缩实验和阶梯试样热轧-淬火实验研究了低成本的Ti微合金化汽车大梁钢510L的动态再结晶行为.结果表明,应变速率为0.1s-1时,变形温度为850~1050℃时均发生动态再结晶,应变速率为0.2s-1时,只有在变形温度高于950℃时发生动态再结晶.变形温度的升高和变形量的增大会逐渐细化奥氏体晶粒,并使再结晶体积分数趋于增大.回归得到实验钢的动态再结晶激活能仅为211.43kJ/mol,说明Ti的添加几乎没有抑制高温奥氏体的动态再结晶,并建立了动态再结晶临界应变模型和动力学模型.  相似文献   

14.
采用Gleeble-1500热模拟试验机进行了T91钢的压缩试验,研究了变形温度为1100~1250℃、应变速率为0.01~1 s-1时该钢的变形行为,分析了流变应力与应变速率和变形温度之间的关系,计算了高温变形时应力指数和变形激活能,并采用Zener-Hollomon参数法构建该钢高温塑性变形的本构关系,绘制了动态再结晶图和热加工图.结果表明:在试验变形条件范围内,其真应力-真应变曲线呈双峰特征;钢中发生了明显的动态再结晶,且再结晶类型属于连续动态再结晶.T91钢的热变形激活能为484 kJ.mol-1,利用加工图确定了热变形的流变失稳区,结合力学性能,可以优先选择的变形温度为1200~1 250℃,应变速率不高于0.1 s-1.  相似文献   

15.
高锰TRIP钢热变形行为研究   总被引:1,自引:0,他引:1  
通过单轴压缩实验,研究了高锰TRIP钢(Fe15Mn3Si3Al)在800~1050℃温度范围内、应变速率ε.=0.01~5.0s-1条件下的热变形行为和组织变化,讨论了热变形参数对流变应力和显微组织的影响.结果表明:动态再结晶只在较高变形温度和低应变速率下发生.实验钢对温度和应变速率都很敏感,而应变速率对实验钢的热变形行为影响较大.高锰TRIP钢的表观应力指数n=3.909,变形激活能Q=353.167kJ/mol.根据实验数据,建立了高锰TRIP钢高温变形的热加工方程.  相似文献   

16.
为研究高强钢300M静态再结晶行为,采用Gleeble-3800型热模拟试验机对300M钢进行单/双道次热压缩试验.通过双道次热压缩试验分析了变形温度、应变速率、变形量和初始晶粒尺寸对静态再结晶体积分数的影响.变形温度越高,应变速率越大,变形量越大,初始晶粒尺寸越小,则静态再结晶体积分数越大.其中变形温度、变形量和应变速率对静态再结晶体积分数影响较大,初始晶粒尺寸的影响相比较小.基于双道次热压缩试验结果建立了300M钢的静态再结晶体积分数模型,基于单道次热压缩试验结果建立了300M钢完全静态再结晶晶粒尺寸模型,并验证了静态再结晶体积分数模型的正确性.  相似文献   

17.
 利用Gleeble3800热模拟试验机研究了在温度870~970℃和应变速率0.001~10s-1范围内,近β钛合金Ti-7333 β锻热变形的组织演化规律及动态再结晶行为.实验结果表明,Ti-7333钛合金在温度较高、应变速率较低的情况下变形时,表现出典型的动态再结晶行为,动态再结晶晶粒尺寸和再结晶体积分数均随变形温度升高和变形速率降低而增大,而应变速率对再结晶晶粒尺寸的影响较显著.在变形速率较高(>0.1s-1)且变形温度较低(<870℃)时,晶粒严重变形拉长,但动态再结晶将很难发生.因子Z决定着动态再结晶晶粒尺寸,二者之间为幂指数关系.通过回归分析方法得出动态再结晶晶粒尺寸的数学表达式为:lnDr=8.50949-0.31411lnZ.采用该表达式可以对一定变形条件的动态再结晶晶粒尺寸进行精确预测,从而为Ti-7333钛合金热变形条件下的组织控制提供可靠依据.不适当的热变形工艺会造成组织粗大或者不均匀,进而使材料性能恶化.因此,应该从材料组织均匀性和晶粒细化角度选择最佳的热变形参数.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号