首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
制备了3种不同成分的Mg-Gd-Y-Zn四元合金,并对其显微组织和力学性能进行了系统的研究.结果显示,Mg-6Gd-2Y-1Zn和Mg-6Gd-3Y-1Zn合金的铸态组织主要由α-Mg,(Mg,Zn)3Gd和18R-LPSO结构的Mg12Y1Zn1相组成.而Mg-6Gd-4Y-1Zn合金的铸态组织则主要由α-Mg,Mg24(YGdZn)5和Mg12Y1Zn1相组成.合金退火后,3种合金的退火组织均由α-Mg,Mg12Y1Zn1和14H-LPSO相组成.热挤压过程中Mg12Y1Zn1相被拉长,呈长条状沿挤压方向排列,而14H-LPSO相则分布于条状分布的Mg12Y1Zn1之间.挤压态合金经固溶和225℃时效(T6)处理后,显微组织中呈现14H-LPSO结构和β’沉淀相共存.对挤压后的合金直接进行时效处理(T5)过程中也发生了β’沉淀相,但14H-LPSO相体积分数少于T6态.3种合金中Mg-6Gd-4Y-1Zn合金在T6态的性能最好.  相似文献   

2.
研究了铸态、热处理态及含0.02%(质量分数)Mg的K465镍基铸造高温合金的显微组织、力学性能.研究结果表明:铸态K465合金组织主要由γ基体、弥散分布的γ′相、(γ+γ′)共晶和碳化物组成,室温平均抗拉强度960MPa,伸长率6.0%,975℃/230MPa条件下平均持久寿命28.1h;经1210℃/4h+空冷的固溶热处理后,晶界MC碳化物部分转变为M6C碳化物,γ′相颗粒尺寸减小到0.1~0.2μm,合金室温平均抗拉强度1055MPa,伸长率4.0%,975℃/230MPa条件下平均持久寿命为50.3h;加入0.02%(质量分数)Mg后,合金中MC碳化物球化,室温平均抗拉强度990MPa...  相似文献   

3.
为了改善铸态Mg-6Al-5Pb-1Zn-0.3Mn(质量分数,%)阳极的加工性能,对其进行固溶退火处理。采用浸泡法、恒电流和动电位极化扫描法及电化学阻抗法,研究不同固溶时间对其在3.5%(质量分数)NaCl中自腐蚀和电化学行为的影响;采用光学显微镜、扫描电镜对其显微组织和腐蚀形貌进行观察。研究结果表明:经400℃固溶24h,粗大的β-Mg17Al12相完全回溶于基体中,枝晶偏析基本消除;与铸态合金相比,晶界附近富Al区的消失使得固溶态合金耐蚀性能降低,晶体缺陷的减少使得放电性能变差;随着固溶时间延长,阴极β-Mg17Al12相的减少使得合金耐蚀性能提高,合金元素固溶度的增大使得合金放电性能提高;在放电过程中,放电产物层不断脱落,维持了镁合金阳极的放电活性。  相似文献   

4.
以AZ91D镁合金为研究对象,研究了固溶处理对后期时效处理效果的影响.结果表明:415℃固溶处理5h后,铸态AZ91D镁合金中分布在晶界处的网状脆性相β-Mg_(17)A_(12)基本全部溶入基体相α-Mg中.后续时效期间沉淀相β-Mg_(17)A_(12)主要在晶界处不连续析出细小条状晶;而在晶内则连续析出颗粒状或短棒状晶.固溶时效处理后析出的β-Mg_(17)A_(12)相尺寸较铸态时大幅减小.晶内析出的β-Mg_(17)A_(12)相尺寸和间距小于400nm时,对提高合金力学性能的贡献很大.拉伸断口上撕裂片越大、解理台阶越多,则晶内析出β-Mg_(17)A_(12)相的尺寸越小、数量越多、分布越弥散,极有利于大幅提高合金的力学性能.415℃固溶处理10、24h后再经200℃时效处理16h,合金的抗拉强度出现2个峰值,较铸态时分别提高22.2%、34%,硬度提高了35.8%、34.7%.  相似文献   

5.
长周期堆垛有序结构强化Mg-Zn-Y合金的组织与性能   总被引:2,自引:0,他引:2  
为研究长周期堆垛有序( LPSO)结构对Mg-Zn-Y变形镁合金组织与性能的影响,通过铸造和热挤压工艺制备了Mg97Zn1Y2和Mg94Zn2Y4合金.采用扫描电子显微镜、透射电子显微镜以及电子万能试验机等研究了2种合金在铸态、退火态以及挤压态下的显微组织和力学性能.研究结果表明,Mg97Zn1Y2和Mg94Zn2Y4合金的铸态组织均由α-Mg和18R型LPSO相构成,LP-SO相连接成网状分布在晶界.经500℃退火36 h后,Mg97 Zn1 Y2合金中部分块状LPSO相分解为细层片状,结构由18R转变为14H,但在Mg94Zn2Y4合金中未观察到LPSO相结构类型的转变.通过挤压变形,LPSO相沿挤压方向排列,合金强度得到大幅度提高,Mg97Zn1Y2和Mg94Zn2Y4合金的抗拉强度分别达到319和390 MPa.  相似文献   

6.
采用普通铸造法制备含高体积分数准晶相的Mg-Zn-Y(MZY)准晶中间合金。经SEM,EDS、XRD检测和摩擦磨损试验,研究MZY准晶颗粒加入量对AZ91基体合金微观组织及耐磨性能的影响。结果表明:MZY准晶颗粒可以明显细化AZ91合金的铸态组织,且骨骼状连续网状分布的β-Mg17Al12相断裂为弥散的岛状,合金的铸态组织中除α-Mg相、β-Mg17Al12相外还出现弥散分布在晶界处的高温稳定的Mg3Zn6Y准晶相;在不同载荷条件下,添加质量分数为6%的MZY准晶合金试样的摩擦因数由0.68减小至0.26,在100 N载荷下干摩擦30 min,其质量磨损量仅为基体合金质量的46.2%,磨损机理由基体的黏着摩擦转变为磨粒摩擦。  相似文献   

7.
针对传统可溶性压裂球材质存在的缺点,采用铸造法制备性能优异的可溶性镁合金,系统研究了铝含量对可溶性镁合金组织、溶解性能及力学性能的影响.结果表明:可溶性镁合金组织由α-Mg和β-Mg17 Al12相组成,随着铝含量的增多,组织中β-Mg17 Al12相数量增多,呈连续网状分布于α相晶界处,并且α晶粒也变得粗大.可溶性镁合金在氯化钾(KCl)溶液中可自行溶解,且随KCl浓度的升高,溶解速率变大,在质量分数为3%的KCl中溶解性能最佳.随着铝含量的增加,可溶性镁合金的溶解速率变大,室温下溶解速率最高可达7.42 mg·h-1·cm-2.溶解产物粒度分析结果显示,中值粒径D50为38.691μm,溶解产物物相为Mg17 Al12和Mg(OH)2.可溶性镁合金的抗压强度最高可达430 MPa,变形量为3.0%时试样断裂,随着铝含量的增加,可溶性镁合金的塑性降低.  相似文献   

8.
以Mg-4Al-2Sr-1Ca合金为基体,在提高合金中Al含量的基础上,配制了不同成分的几种Mg-(4-7)Al-2Sr-1Ca合金.研究了Al含量对Mg-Al-Sr-Ca合金显微组织和力学性能的影响.研究发现,Mg-4Al-2Sr-1Ca合金的主要组成相为α-Mg,沿枝晶界分布的Mg2Ca α-Mg共晶相、Mg-Al-Sr三元相及晶内Al2Ca颗粒相.当Al元素质量分数增大到5%~6%时,合金中出现了(Mg,Al)2Ca相;进一步增大Al元素质量分数至7%,另一种新相Al4Sr相也被观察到.随着Al含量的增大,合金的强度和塑性在室温和高温下都有所上升.在175℃/70MPa和200℃/70MPa下,Mg-5Al-2Sr-1Ca和Mg-6Al-2Sr-1Ca合金表现出了比其他合金更好的高温抗蠕变性能.  相似文献   

9.
利用光学显微镜、扫描电镜、X线衍射、透射电镜等手段研究添加1%Y(质量分数,下同)对Mg-6Gd-0.6Zr 合金析出行为和力学性能的影响.研究结果表明:添加合金元素Y能大大促进Mg-6Gd合金的时效析出;具有高过饱和度的Mg-6Gd-Y-0.6Zr合金在200℃表现出显著的时效硬化现象;随着时效温度的升高,晶界周围析出相极度粗化并且β'相体积分数降低、分布不均;尤其在250℃峰时效的组织中观察到Mg-6Gd合金所不具备的β'相.200℃时效72 h后,合金获得优异的力学性能,其室温抗拉强度、屈服强度和伸长率分别为354MPa,292MPa和9.5%,250℃时抗拉强度、屈服强度和伸长率分别为307MPa,220MPa和13.6%.  相似文献   

10.
热处理对挤压铸造2024铝合金组织与性能的影响   总被引:1,自引:0,他引:1  
采用挤压铸造技术制备了2024铝合金管件,研究了固溶处理对析出相溶解过程的影响.结果表明:固溶处理初期,组织中θ和S相的数量逐渐减少,但在晶界的共晶相中还有一定的Cu含量;随固溶时间增加,合金基体中Cu和Mg的含量逐渐增多,晶界处的共晶相大部分固溶进入基体,合金的固溶强化作用主要来源于富Cu,Mg相的溶解.合金经过495℃固溶处理16 h+190℃时效12 h后,抗拉强度达到435 MPa,延伸率6.9%.  相似文献   

11.
采用光学显微镜(OM)、扫描电子显微镜(SEM)、X线衍射分析(XRD)及力学性能测试等手段,研究不同含量稀土元素Y(4%,6%,8%,质量分数)对Mg-2%Nd-0.2%Zn-0.4%Zr镁合金铸态显微组织及力学性能的影响。结果表明:在Mg-2%Nd-0.2%Zn-0.4%Zr镁合金中添加Y可以明显细化合金晶粒,其中加入6%Y时效果最佳;合金晶粒粒径由100μm细化至35μm。未添加稀土元素的Mg-2%Nd-0.2%Zn-0.4Zr铸态合金中主要存在Mg12Nd相;加入稀土元素Y后,Nd和Y分别以Mg41Nd5和Mg24Y5化合物形式存在,合金的力学性能得到提高。其中加入6%Y的合金综合力学性能最好,抗拉强度和屈服强度分别提高至245 MPa和150 MPa,而伸长率大幅提高至16%,较未加稀土元素Y的合金提高191%;当Y含量达到8%时,合金综合力学性能下降。  相似文献   

12.
The effects of Zn content on the microstructure and the mechanical and corrosion properties of as-cast low-alloyed Mg–xZn–0.2Ca alloys (x=0.6wt%, 2.0wt%, 2.5wt%, hereafter denoted as 0.6Zn, 2.0Zn, and 2.5Zn alloys, respectively) are investigated. The results show that the Zn content not only influences grain refinement but also induces different phase precipitation behaviors. The as-cast microstructure of the 0.6Zn alloy is composed of α-Mg, Mg2Ca, and Ca2Mg6Zn3 phases, whereas 2.0Zn and 2.5Zn alloys only contain α-Mg and Ca2Mg6Zn3 phases, as revealed by X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses. Moreover, with increasing Zn content, both the ultimate tensile strength (UTS) and the elongation to fracture first increase and then decrease. Among the three investigated alloys, the largest UTS (178 MPa) and the highest elongation to fracture (6.5%) are obtained for the 2.0Zn alloy. In addition, the corrosion rate increases with increasing Zn content. This paper provides an updated investigation of the alloy composition–microstructure–property relationships of different Zn-containing Mg–Zn–Ca alloys.  相似文献   

13.
Icosahedral phase (I-phase) is a relatively excellent strengthening phase in Mg alloys. Depending on their volume fraction, the yield strength of Mg–Zn–Y–Zr alloys can vary from 150 to 450 MPa at room temperature. Recently, the formation of I-phase has been considered as one of the most effective methods for developing high strength lightweight Mg alloys for automotive and aerospace applications. In this review article, a series of research work about I-phase containing Mg alloys have been systematically investigated including I-phase formation mechanism and their effects on mechanical properties of Mg alloys. Particular emphases have been given to: (1) Structure of I-phase and its orientation relationship with the a-Mg matrix. (2) Influence of alloying elements and solidification conditions on I-phase formation. (3) Effects of I-phase on microstructural evolution and mechanical improvement of Mg–Zn–Y–(Zr) alloys. Moreover, the applications of I-phase for the mechanical improvement of other Mg alloys such as AZ91 and super-lightweight Mg–Li alloys are also reviewed.  相似文献   

14.
In this paper, a large-sized ingot of Mg-9Gd-3Y-1.5Zn-0.5Zr (wt%) alloy with a diameter of 600 mm was successfully prepared by the semi-continuous casting method. The alloy was subsequently annealed at a relatively low temperature of 430℃ for 12 h as a homogenization treatment. The microstructure and room-temperature mechanical properties of the alloy were investigated systematically. The results show that the as-cast alloy contained a mass of discontinuous lamellar-shaped 18R long-period stacking ordered (LPSO) phases with a composition of Mg10ZnY and an α-Mg matrix, along with net-shaped Mg5(Y,Gd) eutectic compounds at the grain boundaries. Most of the eutectic compounds dissolved after the homogenization treatment. Moreover, the amount and dimensions of the lamellar-shaped LPSO phase obviously increased after the homogenization treatment. The structure of the phase transformed into 14H-type LPSO with composition Mg12Zn(Y,Gd). The mechanical properties of the heat-treated large-sized alloy ingot are uniform. The ultimate tensile strength (UTS) and tensile yield strength (TYS) of the alloy reached 207.2 MPa and 134.8 MPa, respectively, and the elongation was 3.4%. The high performances of the large-sized alloy ingot after the homogenization treatment is attributed to the strengthening of the α-Mg solid solution and to the plentiful LPSO phase distributed over the α-Mg matrix.  相似文献   

15.
利用光学显微镜、扫描电子显微镜、X射线衍射仪等分析手段研究了固溶时效及退火工艺对AZ80铸造镁合金显微组织的影响。结果表明,固溶处理可获得单相α-Mg固溶体组织;在随后的时效处理中β-Mg17Al12相以连续析出和不连续析出两种方式重新析出;在退火处理的缓慢冷却过程中β-Mg17Al12相以层片状形式析出;退火后的球化处理使层片状β-Mg17Al12相通过自身溶断的方式获得均匀细小的球状β-Mg17Al12相。  相似文献   

16.
This research aims to study the significance of Gd addition (0wt%-2wt%) on the microstructure and mechanical properties of Mg-9Al alloy. The effect of Gd addition on the microstructure was investigated via X-ray diffraction (XRD), optical microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The Mg-9Al alloy contained two phases, α-Mg and β-Mg17Al12. Alloying with Gd led to the emergence of a new rectangular-shaped phase, Al2Gd. The grain size also decreased marginally upon Gd addition. The ultimate tensile strength and microhardness of Mg-9Al alloy increased by 23% and 19%, respectively, upon 1.5wt% Gd addition. We observed that, although Mg-9Al-2.0Gd alloy exhibited the smallest grain size (181 μm) and the highest dislocation density (5.1×1010 m-2) among the investigated compositions, the Mg-9Al-1.5Gd alloy displayed the best mechanical properties. This anomalous behavior was observed because the Al2Gd phase was uniformly distributed and present in abundance in Mg-9Al-1.5Gd alloy, whereas it was coarsened and asymmetrically conglomerated in Mg-9Al-2.0Gd.  相似文献   

17.
为探索和改善轧制包铝镁合金板的界面结合状况,用气体保护铸造法制备了1060铝板包覆AZ31镁合金铸锭.借助金相显微镜、扫描电镜以及X射线衍射等分析方法,研究了复合铸锭芯材及界面的显微组织和相结构,并进行了硬度测试.发现AZ31镁合金芯材组织由α-Mg基体以及沿晶界分布的不连续网状α-Mg+p+Mg17A112共晶体组成,是一种典型的铸造离异共晶组织.铸造包铝镁合金锭界面形成扩散溶解层,扩散溶解层由α-Mg固溶体层、共晶层(α-Mg+β+Mg17A112)、β-Mg17A112及A1Mg化合物层组成,形成具有多层结构的冶金结合界面.提出了浇注AZ31熔体的瞬间在1060铝板表面形成“熔池”并快速凝固的界面形成机制.  相似文献   

18.
The microstructure and mechanical properties of extruded Mg-2.5Zn-0.5Y alloy before and after annealing treatments were investigated. The as-extruded alloy exhibits a yield tensile strength (YTS) of 305.9 MPa and an ultimate tensile strength (UTS) of 354.8 MPa, whereas the elongation is only 4%. After annealing, the YTS and UTS decrease to 150 MPa and 240 MPa, respectively, and the elongation increases to 28%. Interestingly, the annealed alloy maintains an acceptable stress level even after a much higher ductility is achieved. These excellent mechanical properties stem from the combined effects of fine α-Mg dynamic recrystallization (DRX) grains and a homogeneously distributed icosahedral quasicrystalline phase (I-phase) in the α-Mg DRX grains. In particular, the superior ductility originates from the coherent interface of I-phase and α-Mg and from the formation of the secondary twin {1011}–{1012}(38°<1210>) in the tension twin {1012}.  相似文献   

19.
The as-cast Mg–6Li–4Zn-xMn alloys were prepared and extruded at 280 ​°C with an extrusion ratio of 25:1. The effects of Mn content on the microstructure and mechanical properties of Mg–6Li–4Zn-xMn alloys were investigated in this study. The XRD results show that Mg–6Li–4Zn–xMn alloys consisted of α-Mg (hcp) ​+ ​β-Li (bcc) duplex structured matrix, MgLi2Zn and Mn phases. The grains of the extruded Mg–6Li–4Zn–xMn alloys were refined by dynamic recrystallization during the extrusion process. The EBSD results show that the extruded alloys had basal textures. The grain size of the extruded alloys decreased while the basal texture was strengthened with the increasing Mn addition. The TEM results show that a large amount of nanoscale Mn precipitates existed in the extruded Mg–6Li–4Zn–1.2Mn alloy, which can effectively inhibit the dynamic recrystallized (DRXed) grains growth during the hot extrusion and is beneficial to the improvement of mechanical properties. Mg–6Li–4Zn–1.2Mn alloy in this research possesses the best mechanical properties with the ultimate tensile strength and yield strength of 321 ​MPa, 250 ​MPa, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号