首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
After methane, ethane is the most abundant hydrocarbon in the remote atmosphere. It is a precursor to tropospheric ozone and it influences the atmosphere's oxidative capacity through its reaction with the hydroxyl radical, ethane's primary atmospheric sink. Here we present the longest continuous record of global atmospheric ethane levels. We show that global ethane emission rates decreased from 14.3 to 11.3 teragrams per year, or by 21 per cent, from 1984 to 2010. We attribute this to decreasing fugitive emissions from ethane's fossil fuel source--most probably decreased venting and flaring of natural gas in oil fields--rather than a decline in its other major sources, biofuel use and biomass burning. Ethane's major emission sources are shared with methane, and recent studies have disagreed on whether reduced fossil fuel or microbial emissions have caused methane's atmospheric growth rate to slow. Our findings suggest that reduced fugitive fossil fuel emissions account for at least 10-21 teragrams per year (30-70 per cent) of the decrease in methane's global emissions, significantly contributing to methane's slowing atmospheric growth rate since the mid-1980s.  相似文献   

2.
The carbon cycle is one of the fundamental climate change issues.Its long-term evolution largely affects the amplitude and trend of human-induced climate change,as well as the formulation and implementation of emission reduction policy and technology for stabilizing the atmospheric CO2concentration.Two earth system models incorporating the global carbon cycle,the Community Earth System Model and the Beijing Normal University-Earth System Model,were used to investigate the effect of the carbon cycle on the attribution of the historical responsibility for climate change.The simulations show that when compared with the criterion based on cumulative emissions,the developed(developing)countries’responsibility is reduced(increased)by 6%–10%using atmospheric CO2concentration as the criterion.This discrepancy is attributed to the fact that the developed world contributed approximately61%–68%(61%–64%)to the change in global oceanic(terrestrial)carbon sequestration for the period from 1850 to2005,whereas the developing world contributed approximately 32%–49%(36%–39%).Under a developed world emissions scenario,the relatively larger uptake of global carbon sinks reduced the developed countries’responsibility for carbon emissions but increased their responsibility for global ocean acidification(68%).In addition,the large emissions from the developed world reduced the efficiency of the global carbon sinks,which may affect the long-term carbon sequestration and exacerbate global warming in the future.Therefore,it is necessary to further consider the interaction between carbon emissions and the carbon cycle when formulating emission reduction policy.  相似文献   

3.
森林土壤是温室气体重要的源和汇。探讨不同森林管理和全球大气变化下土壤温室气体通量特征,为有效减少温室气体排放及森林可持续管理等提供参考。笔者从森林土壤温室气体(forest soil green house gases)、森林管理(forest mangement)和全球大气变化(global atmospheric change)3个关键研究点,查阅近年来相关研究成果,归纳森林管理和全球大气变化下土壤温室气体通量的一般性模式。CO2、CH4和N2O是3种重要温室气体,其通量间存在协同、消长和随机型耦合关系。森林管理如火烧、采伐和造林等显著影响土壤温室气体通量。一般情况下,火烧导致土壤N2O通量降低,CH4吸收量增加,CO2通量因火烧类型、火烧强度、生态系统类型不同出现增加、减低和无影响3种结果; 采伐通常导致土壤CO2、CH4和N2O排放增加; 造林可使土壤CO2排放减少,对N2O和CH4通量的影响随生态系统类型、造林树种等而改变。全球大气变化如CO2浓度升高、氮沉降和气温升高影响森林土壤温室气体通量。通常,CO2浓度升高导致土壤CO2和N2O排放量增加,CH4吸收量降低; 氮沉降促进土壤N2O排放、抑制CH4吸收。气温升高导致土壤CO2和N2O排放增加。森林管理和全球大气变化对土壤温室气体通量的综合影响是非叠加的,有效的森林管理可能改变土壤温室气体通量对全球大气变化的响应。  相似文献   

4.
Methyl chloroform (CH3CCl3, 1,1,1,-trichloroethane) was used widely as a solvent before it was recognized to be an ozone-depleting substance and its phase-out was introduced under the Montreal Protocol. Subsequently, its atmospheric concentration has declined steadily and recent European methyl chloroform consumption and emissions were estimated to be less than 0.1 gigagrams per year. However, data from a short-term tropospheric measurement campaign (EXPORT) indicated that European methyl chloroform emissions could have been over 20 gigagrams in 2000 (ref. 6), almost doubling previously estimated global emissions. Such enhanced emissions would significantly affect results from the CH3CC13 method of deriving global abundances of hydroxyl radicals (OH) (refs 7-12)-the dominant reactive atmospheric chemical for removing trace gases related to air pollution, ozone depletion and the greenhouse effect. Here we use long-term, high-frequency data from Mace Head, Ireland and Jungfraujoch, Switzerland, to infer European methyl chloroform emissions. We find that European emission estimates declined from about 60 gigagrams per year in the mid-1990s to 0.3-1.4 and 1.9-3.4 gigagrams per year in 2000-03, based on Mace Head and Jungfraujoch data, respectively. Our European methyl chloroform emission estimates are therefore higher than calculated from consumption data, but are considerably lower than those derived from the EXPORT campaign in 2000 (ref. 6).  相似文献   

5.
Methane is an important greenhouse gas, and its atmospheric concentration has nearly tripled since pre-industrial times. The growth rate of atmospheric methane is determined by the balance between surface emissions and photochemical destruction by the hydroxyl radical, the major atmospheric oxidant. Remarkably, this growth rate has decreased markedly since the early 1990s, and the level of methane has remained relatively constant since 1999, leading to a downward revision of its projected influence on global temperatures. Large fluctuations in the growth rate of atmospheric methane are also observed from one year to the next, but their causes remain uncertain. Here we quantify the processes that controlled variations in methane emissions between 1984 and 2003 using an inversion model of atmospheric transport and chemistry. Our results indicate that wetland emissions dominated the inter-annual variability of methane sources, whereas fire emissions played a smaller role, except during the 1997-1998 El Ni?o event. These top-down estimates of changes in wetland and fire emissions are in good agreement with independent estimates based on remote sensing information and biogeochemical models. On longer timescales, our results show that the decrease in atmospheric methane growth during the 1990s was caused by a decline in anthropogenic emissions. Since 1999, however, they indicate that anthropogenic emissions of methane have risen again. The effect of this increase on the growth rate of atmospheric methane has been masked by a coincident decrease in wetland emissions, but atmospheric methane levels may increase in the near future if wetland emissions return to their mean 1990s levels.  相似文献   

6.
van Groenigen KJ  Osenberg CW  Hungate BA 《Nature》2011,475(7355):214-216
Increasing concentrations of atmospheric carbon dioxide (CO(2)) can affect biotic and abiotic conditions in soil, such as microbial activity and water content. In turn, these changes might be expected to alter the production and consumption of the important greenhouse gases nitrous oxide (N(2)O) and methane (CH(4)) (refs 2, 3). However, studies on fluxes of N(2)O and CH(4) from soil under increased atmospheric CO(2) have not been quantitatively synthesized. Here we show, using meta-analysis, that increased CO(2) (ranging from 463 to 780 parts per million by volume) stimulates both N(2)O emissions from upland soils and CH(4) emissions from rice paddies and natural wetlands. Because enhanced greenhouse-gas emissions add to the radiative forcing of terrestrial ecosystems, these emissions are expected to negate at least 16.6 per cent of the climate change mitigation potential previously predicted from an increase in the terrestrial carbon sink under increased atmospheric CO(2) concentrations. Our results therefore suggest that the capacity of land ecosystems to slow climate warming has been overestimated.  相似文献   

7.
农业活动是一个重要的大气污染物排放源。随着我国工业污染物减排措施的不断加强以及我国农业现代化发展进程的加快,农业活动的污染物排放对大气环境的影响将日益突出。文章综述了农业活动排放大气污染物的基本形式和影响大气复合污染的主要机理,分析了农业活动的污染物排放及其大气环境效应模拟研究现状,并提出了面临的主要问题:(1)农业排放源估算和排放源清单制定的不确定性;(2)PM2.5与农业排放各前体物之间呈高度非线性关系;和(3)现有空气质量模式对PM2.5浓度及其化学组分预报准确性不够。  相似文献   

8.
污水处理厂温室气体排放评估   总被引:8,自引:0,他引:8  
大气中温室气体(GHG)浓度的上升导致全球气候变化,其中,污水处理厂GHG的排放不容忽视。我国污水处理厂的数量及处理能力逐年攀升,针对污水处理厂GHG排放的研究具有重要意义。该文将污水处理厂GHG排放源划分为直接排放部分、能耗部分、物耗部分及其他部分,提出每部分相应的GHG排放折算因子,构建了相应的评价体系,以指导污水处理厂的低碳运行。利用该评价体系评估了北方一座污水处理厂的全厂GHG排放特征和机制,并对沼气回收前后的排放情况进行比较。结果表明,该厂CO2排放量为5.68×105 kg/d。其中直接排放占排放总量的60%以上;通过沼气产能回收可大量降低GHG排放。  相似文献   

9.
现代大气科学包含全球性一般理论和区域性实践知识.陶诗言学术成长轨迹表明他是中国大气科学本土特性的典型代表.原因有四:第一,陶诗言为世界范围内大气科学知识体系做出贡献;第二,陶诗言与中国当代大气科学知识体系共成长;第三,陶诗言的大部分科学理论源于并服务于中国本土气象实践;第四,陶诗言开创了中国大气科学的“实践学派”.中国大气科学本土特性既满足了国家需求,也为世界大气科学做出贡献,对全球性和本土性进行了哲学反思.  相似文献   

10.
Fisher B  Costanza R 《Nature》2005,438(7066):301-302
The non-participation of the United States in the recently ratified Kyoto Protocol is a matter for global concern because it is estimated that the country produces 24% of all greenhouse-gas emissions worldwide. Here we analyse the commitment of individual states and municipalities to addressing this problem and find that, despite the federal policy, between 24 and 35% of the US population are currently (or soon will be) engaged in policies directed towards significantly reducing anthropogenic climate change. The importance of this sub-national effort, which we estimate corresponds to 27-49% of the gross domestic product, will depend--like the targets adopted in Kyoto--on the real reductions achieved in greenhouse-gas emissions.  相似文献   

11.
Secondary organic aerosol (SOA) particles are formed in the atmosphere from condensable oxidation products of anthropogenic and biogenic volatile organic compounds (VOCs). On a global scale, biogenic VOCs account for about 90% of VOC emissions and of SOA formation (90?billion kilograms of carbon per year). SOA particles can scatter radiation and act as cloud condensation or ice nuclei, and thereby influence the Earth's radiation balance and climate. They consist of a myriad of different compounds with varying physicochemical properties, and little information is available on the phase state of SOA particles. Gas-particle partitioning models usually assume that SOA particles are liquid, but here we present experimental evidence that they can be solid under ambient conditions. We investigated biogenic SOA particles formed from oxidation products of VOCs in plant chamber experiments and in boreal forests within a few hours after atmospheric nucleation events. On the basis of observed particle bouncing in an aerosol impactor and of electron microscopy we conclude that biogenic SOA particles can adopt an amorphous solid-most probably glassy-state. This amorphous solid state should provoke a rethinking of SOA processes because it may influence the partitioning of semi-volatile compounds, reduce the rate of heterogeneous chemical reactions, affect the particles' ability to accommodate water and act as cloud condensation or ice nuclei, and change the atmospheric lifetime of the particles. Thus, the results of this study challenge traditional views of the kinetics and thermodynamics of SOA formation and transformation in the atmosphere and their implications for air quality and climate.  相似文献   

12.
Sitch S  Cox PM  Collins WJ  Huntingford C 《Nature》2007,448(7155):791-794
The evolution of the Earth's climate over the twenty-first century depends on the rate at which anthropogenic carbon dioxide emissions are removed from the atmosphere by the ocean and land carbon cycles. Coupled climate-carbon cycle models suggest that global warming will act to limit the land-carbon sink, but these first generation models neglected the impacts of changing atmospheric chemistry. Emissions associated with fossil fuel and biomass burning have acted to approximately double the global mean tropospheric ozone concentration, and further increases are expected over the twenty-first century. Tropospheric ozone is known to damage plants, reducing plant primary productivity and crop yields, yet increasing atmospheric carbon dioxide concentrations are thought to stimulate plant primary productivity. Increased carbon dioxide and ozone levels can both lead to stomatal closure, which reduces the uptake of either gas, and in turn limits the damaging effect of ozone and the carbon dioxide fertilization of photosynthesis. Here we estimate the impact of projected changes in ozone levels on the land-carbon sink, using a global land carbon cycle model modified to include the effect of ozone deposition on photosynthesis and to account for interactions between ozone and carbon dioxide through stomatal closure. For a range of sensitivity parameters based on manipulative field experiments, we find a significant suppression of the global land-carbon sink as increases in ozone concentrations affect plant productivity. In consequence, more carbon dioxide accumulates in the atmosphere. We suggest that the resulting indirect radiative forcing by ozone effects on plants could contribute more to global warming than the direct radiative forcing due to tropospheric ozone increases.  相似文献   

13.
Methane emissions from terrestrial plants under aerobic conditions   总被引:5,自引:0,他引:5  
Keppler F  Hamilton JT  Brass M  Röckmann T 《Nature》2006,439(7073):187-191
Methane is an important greenhouse gas and its atmospheric concentration has almost tripled since pre-industrial times. It plays a central role in atmospheric oxidation chemistry and affects stratospheric ozone and water vapour levels. Most of the methane from natural sources in Earth's atmosphere is thought to originate from biological processes in anoxic environments. Here we demonstrate using stable carbon isotopes that methane is readily formed in situ in terrestrial plants under oxic conditions by a hitherto unrecognized process. Significant methane emissions from both intact plants and detached leaves were observed during incubation experiments in the laboratory and in the field. If our measurements are typical for short-lived biomass and scaled on a global basis, we estimate a methane source strength of 62-236 Tg yr(-1) for living plants and 1-7 Tg yr(-1) for plant litter (1 Tg = 10(12) g). We suggest that this newly identified source may have important implications for the global methane budget and may call for a reconsideration of the role of natural methane sources in past climate change.  相似文献   

14.
氮肥的不合理施用导致土壤活性氮气体(Nr,包括N2O、HONO、NOx、NH3等)过度排放,严重威胁着生态环境和人类健康.综述了土壤Nr排放的主要途径,探讨了土壤微生物过程、施肥、土壤温度、土壤水分含量、耕作方式及其他调控因素对土壤Nr排放的影响,总结了土壤Nr排放通量估算的研究现状.提出未来的研究还需结合多种手段,例...  相似文献   

15.
疲劳断裂几率、可靠性及寿命的计算   总被引:1,自引:2,他引:1  
讨论了研究疲劳断裂的几个重要函数——疲劳断裂几率、可靠性及寿命,重点研究了金属的疲劳断裂几率.在详细的数学推导之后,给出了金属疲劳断裂几率即一个变上限复杂积分的近似解析函数表达式,并与计算机的数值曲线进行了比较.从而使疲劳断裂的统计理论具有了实际应用价值。  相似文献   

16.
The Southern Ocean biogeochemical divide   总被引:1,自引:0,他引:1  
Modelling studies have demonstrated that the nutrient and carbon cycles in the Southern Ocean play a central role in setting the air-sea balance of CO(2) and global biological production. Box model studies first pointed out that an increase in nutrient utilization in the high latitudes results in a strong decrease in the atmospheric carbon dioxide partial pressure (pCO2). This early research led to two important ideas: high latitude regions are more important in determining atmospheric pCO2 than low latitudes, despite their much smaller area, and nutrient utilization and atmospheric pCO2 are tightly linked. Subsequent general circulation model simulations show that the Southern Ocean is the most important high latitude region in controlling pre-industrial atmospheric CO(2) because it serves as a lid to a larger volume of the deep ocean. Other studies point out the crucial role of the Southern Ocean in the uptake and storage of anthropogenic carbon dioxide and in controlling global biological production. Here we probe the system to determine whether certain regions of the Southern Ocean are more critical than others for air-sea CO(2) balance and the biological export production, by increasing surface nutrient drawdown in an ocean general circulation model. We demonstrate that atmospheric CO(2) and global biological export production are controlled by different regions of the Southern Ocean. The air-sea balance of carbon dioxide is controlled mainly by the biological pump and circulation in the Antarctic deep-water formation region, whereas global export production is controlled mainly by the biological pump and circulation in the Subantarctic intermediate and mode water formation region. The existence of this biogeochemical divide separating the Antarctic from the Subantarctic suggests that it may be possible for climate change or human intervention to modify one of these without greatly altering the other.  相似文献   

17.
青岛市区大气颗粒物中重金属的浓度及其来源研究   总被引:14,自引:0,他引:14  
1995年和1996年春夏两季,在青岛海洋大学气溶胶观测站(麦岛),共采集了58个大气颗粒物样品,用电感耦合等离子体发射光谱法和石墨炉原子吸收法测定了其中的Al、Fe、Ca、Mg、Mn、K、Na、V、Sr、Pb、Zn、Cd、Cr、Cu、Co、Ni。本文分析了青岛市区大气颗粒物中金属元素的浓度及季节变化规律,并对其来源进行了初步的探讨。结果表明,青岛市区大气颗粒物中重金属主要来源为地壳土壤尘、煤灰尘  相似文献   

18.
林业碳汇提升的主要原理和途径   总被引:1,自引:0,他引:1  
降低大气CO2含量、缓解气候变暖,已成为当今科学界和国际社会广泛关注的前沿热点问题。林业碳汇作为基于自然解决方案实现“碳达峰、碳中和”的一个重要途径,在应对全球气候变化方面发挥着基础性、战略性、独特的作用。林业碳汇不仅是森林碳汇,林产品碳汇也起着不可忽视的重要作用。林业碳汇潜力提升是一个森林生态系统净碳收支平衡和全产业链林产品碳汇的调控过程,主要包括无机碳的植物固定(光合过程、净生产力等)、土壤有机碳的周转与固定(动植物和微生物残体分解与黏土固定)、林产品碳的固持(林产品产量、木材转换效率、种类和使用寿命等)等3方面的调控原理。笔者从森林碳汇和林产品碳汇两个维度阐述了提升林业碳汇的主要原理、方法或途径。提升林业碳汇潜力的主要途径包括:①通过适地适树、适钙适树人工造林,以增加森林面积;②以完善森林经营措施来增加森林净生产力;③利用矿质黏土对有机碳的保护来增加森林土壤碳汇;④提升林产品产量和改进林产品用途以增加其寿命。在全球尺度上,增加森林面积或提高森林净生产力3.4%,或用可再生能源替换薪炭木材,再将薪炭木材用于制造锯材和人造板,都可以连续30 a每年增加1 Pg的碳汇量。减少全球森林火灾面积1/4或增加森林土壤有机碳含量0.23%,也可以增加碳汇1 Pg。此外,林业固碳还有巨大潜力可以挖掘。  相似文献   

19.
AP Ballantyne  CB Alden  JB Miller  PP Tans  JW White 《Nature》2012,488(7409):70-72
One of the greatest sources of uncertainty for future climate predictions is the response of the global carbon cycle to climate change. Although approximately one-half of total CO(2) emissions is at present taken up by combined land and ocean carbon reservoirs, models predict a decline in future carbon uptake by these reservoirs, resulting in a positive carbon-climate feedback. Several recent studies suggest that rates of carbon uptake by the land and ocean have remained constant or declined in recent decades. Other work, however, has called into question the reported decline. Here we use global-scale atmospheric CO(2) measurements, CO(2) emission inventories and their full range of uncertainties to calculate changes in global CO(2) sources and sinks during the past 50 years. Our mass balance analysis shows that net global carbon uptake has increased significantly by about 0.05 billion tonnes of carbon per year and that global carbon uptake doubled, from 2.4?±?0.8 to 5.0?±?0.9 billion tonnes per year, between 1960 and 2010. Therefore, it is very unlikely that both land and ocean carbon sinks have decreased on a global scale. Since 1959, approximately 350 billion tonnes of carbon have been emitted by humans to the atmosphere, of which about 55 per cent has moved into the land and oceans. Thus, identifying the mechanisms and locations responsible for increasing global carbon uptake remains a critical challenge in constraining the modern global carbon budget and predicting future carbon-climate interactions.  相似文献   

20.
生物质燃烧是大气温室气体的主要来源之一,是空气污染的主要构成因素,其对区域大气化学成分和空气质量以及地气系统的辐射平衡产生直接影响进而影响气候变化。科学阐明生物质燃烧排放物是开展大气污染防治工作的基础,亦是制定防控污染天气应急预案的重要依据。笔者从4个方面阐述生物质燃烧排放物的研究进展:生物质燃烧排放物成分,排放源解析及排放模型,生物质燃烧排放特性及其对大气环境的影响,以及燃烧排放物的时空异质性及时空规律性。针对目前研究现状及存在问题,认为应进一步加强生物质燃烧排放物定量化研究,利用 “3S”集成技术、改进算法,注重尺度的转换以及对模型的优化研究; 加强生物质燃烧排放物对生态环境的影响机理研究,进而为大气污染防治工作及制定防控污染天气应急预案提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号