首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structure of a nanobody-stabilized active state of the β(2) adrenoceptor   总被引:1,自引:0,他引:1  
G protein coupled receptors (GPCRs) exhibit a spectrum of functional behaviours in response to natural and synthetic ligands. Recent crystal structures provide insights into inactive states of several GPCRs. Efforts to obtain an agonist-bound active-state GPCR structure have proven difficult due to the inherent instability of this state in the absence of a G protein. We generated a camelid antibody fragment (nanobody) to the human β(2) adrenergic receptor (β(2)AR) that exhibits G protein-like behaviour, and obtained an agonist-bound, active-state crystal structure of the receptor-nanobody complex. Comparison with the inactive β(2)AR structure reveals subtle changes in the binding pocket; however, these small changes are associated with an 11?? outward movement of the cytoplasmic end of transmembrane segment 6, and rearrangements of transmembrane segments 5 and 7 that are remarkably similar to those observed in opsin, an active form of rhodopsin. This structure provides insights into the process of agonist binding and activation.  相似文献   

2.
3.
G-protein-coupled receptors (GPCRs) comprise the largest family of membrane proteins in the human genome and mediate cellular responses to an extensive array of hormones, neurotransmitters and sensory stimuli. Although some crystal structures have been determined for GPCRs, most are for modified forms, showing little basal activity, and are bound to inverse agonists or antagonists. Consequently, these structures correspond to receptors in their inactive states. The visual pigment rhodopsin is the only GPCR for which structures exist that are thought to be in the active state. However, these structures are for the apoprotein, or opsin, form that does not contain the agonist all-trans retinal. Here we present a crystal structure at a resolution of 3 ? for the constitutively active rhodopsin mutant Glu 113 Gln in complex with a peptide derived from the carboxy terminus of the α-subunit of the G protein transducin. The protein is in an active conformation that retains retinal in the binding pocket after photoactivation. Comparison with the structure of ground-state rhodopsin suggests how translocation of the retinal β-ionone ring leads to a rotation of transmembrane helix 6, which is the critical conformational change on activation. A key feature of this conformational change is a reorganization of water-mediated hydrogen-bond networks between the retinal-binding pocket and three of the most conserved GPCR sequence motifs. We thus show how an agonist ligand can activate its GPCR.  相似文献   

4.
G-protein-coupled receptors (GPCRs) are eukaryotic integral membrane proteins that modulate biological function by initiating cellular signalling in response to chemically diverse agonists. Despite recent progress in the structural biology of GPCRs, the molecular basis for agonist binding and allosteric modulation of these proteins is poorly understood. Structural knowledge of agonist-bound states is essential for deciphering the mechanism of receptor activation, and for structure-guided design and optimization of ligands. However, the crystallization of agonist-bound GPCRs has been hampered by modest affinities and rapid off-rates of available agonists. Using the inactive structure of the human β(2) adrenergic receptor (β(2)AR) as a guide, we designed a β(2)AR agonist that can be covalently tethered to a specific site on the receptor through a disulphide bond. The covalent β(2)AR-agonist complex forms efficiently, and is capable of activating a heterotrimeric G protein. We crystallized a covalent agonist-bound β(2)AR-T4L fusion protein in lipid bilayers through the use of the lipidic mesophase method, and determined its structure at 3.5?? resolution. A comparison to the inactive structure and an antibody-stabilized active structure (companion paper) shows how binding events at both the extracellular and intracellular surfaces are required to stabilize an active conformation of the receptor. The structures are in agreement with long-timescale (up to 30?μs) molecular dynamics simulations showing that an agonist-bound active conformation spontaneously relaxes to an inactive-like conformation in the absence of a G protein or stabilizing antibody.  相似文献   

5.
Ben-Chaim Y  Chanda B  Dascal N  Bezanilla F  Parnas I  Parnas H 《Nature》2006,444(7115):106-109
Activation by agonist binding of G-protein-coupled receptors (GPCRs) controls most signal transduction processes. Although these receptors span the cell membrane, they are not considered to be voltage sensitive. Recently it was shown that both the activity of GPCRs and their affinity towards agonists are regulated by membrane potential. However, it remains unclear whether GPCRs intrinsically respond to changes in membrane potential. Here we show that two prototypical GPCRs, the m2 and m1 muscarinic receptors (m2R and m1R), display charge-movement-associated currents analogous to 'gating currents' of voltage-gated channels. The gating charge-voltage relationship of m2R correlates well with the voltage dependence of the affinity of the receptor for acetylcholine. The loop that couples m2R and m1R to their G protein has a crucial function in coupling voltage sensing to agonist-binding affinity. Our data strongly indicate that GPCRs serve as sensors for both transmembrane potential and external chemical signals.  相似文献   

6.
Hattori M  Gouaux E 《Nature》2012,485(7397):207-212
P2X receptors are trimeric ATP-activated ion channels permeable to Na+, K+ and Ca2+. The seven P2X receptor subtypes are implicated in physiological processes that include modulation of synaptic transmission, contraction of smooth muscle, secretion of chemical transmitters and regulation of immune responses. Despite the importance of P2X receptors in cellular physiology, the three-dimensional composition of the ATP-binding site, the structural mechanism of ATP-dependent ion channel gating and the architecture of the open ion channel pore are unknown. Here we report the crystal structure of the zebrafish P2X4 receptor in complex with ATP and a new structure of the apo receptor. The agonist-bound structure reveals a previously unseen ATP-binding motif and an open ion channel pore. ATP binding induces cleft closure of the nucleotide-binding pocket, flexing of the lower body β-sheet and a radial expansion of the extracellular vestibule. The structural widening of the extracellular vestibule is directly coupled to the opening of the ion channel pore by way of an iris-like expansion of the transmembrane helices. The structural delineation of the ATP-binding site and the ion channel pore, together with the conformational changes associated with ion channel gating, will stimulate development of new pharmacological agents.  相似文献   

7.
Crystal structure of the human beta2 adrenergic G-protein-coupled receptor   总被引:1,自引:0,他引:1  
Structural analysis of G-protein-coupled receptors (GPCRs) for hormones and neurotransmitters has been hindered by their low natural abundance, inherent structural flexibility, and instability in detergent solutions. Here we report a structure of the human beta2 adrenoceptor (beta2AR), which was crystallized in a lipid environment when bound to an inverse agonist and in complex with a Fab that binds to the third intracellular loop. Diffraction data were obtained by high-brilliance microcrystallography and the structure determined at 3.4 A/3.7 A resolution. The cytoplasmic ends of the beta2AR transmembrane segments and the connecting loops are well resolved, whereas the extracellular regions of the beta2AR are not seen. The beta2AR structure differs from rhodopsin in having weaker interactions between the cytoplasmic ends of transmembrane (TM)3 and TM6, involving the conserved E/DRY sequences. These differences may be responsible for the relatively high basal activity and structural instability of the beta2AR, and contribute to the challenges in obtaining diffraction-quality crystals of non-rhodopsin GPCRs.  相似文献   

8.
Crystal structure of the β2 adrenergic receptor-Gs protein complex   总被引:1,自引:0,他引:1  
G protein-coupled receptors (GPCRs) are responsible for the majority of cellular responses to hormones and neurotransmitters as well as the senses of sight, olfaction and taste. The paradigm of GPCR signalling is the activation of a heterotrimeric GTP binding protein (G protein) by an agonist-occupied receptor. The β(2) adrenergic receptor (β(2)AR) activation of Gs, the stimulatory G protein for adenylyl cyclase, has long been a model system for GPCR signalling. Here we present the crystal structure of the active state ternary complex composed of agonist-occupied monomeric β(2)AR and nucleotide-free Gs heterotrimer. The principal interactions between the β(2)AR and Gs involve the amino- and carboxy-terminal α-helices of Gs, with conformational changes propagating to the nucleotide-binding pocket. The largest conformational changes in the β(2)AR include a 14 ? outward movement at the cytoplasmic end of transmembrane segment 6 (TM6) and an α-helical extension of the cytoplasmic end of TM5. The most surprising observation is a major displacement of the α-helical domain of Gαs relative to the Ras-like GTPase domain. This crystal structure represents the first high-resolution view of transmembrane signalling by a GPCR.  相似文献   

9.
Recently the genes for several hormone receptors that interact with guanine nucleotide binding proteins (G proteins) have been cloned, including the hamster beta 2-adrenergic receptor (beta 2AR), a human beta AR, the turkey erythrocyte beta AR and the porcine muscarinic acetylcholine receptor (MAR). All these receptors share some amino-acid homology with rhodopsin, particularly in 7 hydrophobic stretches of residues that are believed to represent transmembrane helices. To determine whether differences in ligand specificity result from the divergence in the sequences of the hydrophilic regions of these receptors, we have expressed in mammalian cells genes for the wild-type hamster and human beta AR proteins, and a series of deletion mutant genes of the hamster beta 2AR. The pharmacology of the expressed receptors indicates that most of the hydrophilic residues are not directly involved in the binding of agonists or antagonists to the receptor. In addition, we have identified a mutant receptor that has high agonist affinity but does not couple to adenylate cyclase.  相似文献   

10.
F Ango  L Prézeau  T Muller  J C Tu  B Xiao  P F Worley  J P Pin  J Bockaert  L Fagni 《Nature》2001,411(6840):962-965
G-protein-coupled receptors (GPCRs) transduce signals from extracellular transmitters to the inside of the cell by activating G proteins. Mutation and overexpression of these receptors have revealed that they can reach their active state even in the absence of agonist, as a result of a natural shift in the equilibrium between their inactive and active conformations. Such agonist-independent (constitutive) activity has been observed for the glutamate GPCRs (the metabotropic glutamate receptors mGluR1a and mGluR5) when they are overexpressed in heterologous cells. Here we show that in neurons, the constitutive activity of these receptors is controlled by Homer proteins, which bind directly to the receptors' carboxy-terminal intracellular domains. Disruption of this interaction by mutagenesis or antisense strategies, or expression of endogenous Homer1a (H1a), induces constitutive activity in mGluR1a or mGluR5. Our results show that these glutamate GPCRs can be directly activated by intracellular proteins as well as by agonists.  相似文献   

11.
Jasti J  Furukawa H  Gonzales EB  Gouaux E 《Nature》2007,449(7160):316-323
Acid-sensing ion channels (ASICs) are voltage-independent, proton-activated receptors that belong to the epithelial sodium channel/degenerin family of ion channels and are implicated in perception of pain, ischaemic stroke, mechanosensation, learning and memory. Here we report the low-pH crystal structure of a chicken ASIC1 deletion mutant at 1.9 A resolution. Each subunit of the chalice-shaped homotrimer is composed of short amino and carboxy termini, two transmembrane helices, a bound chloride ion and a disulphide-rich, multidomain extracellular region enriched in acidic residues and carboxyl-carboxylate pairs within 3 A, suggesting that at least one carboxyl group bears a proton. Electrophysiological studies on aspartate-to-asparagine mutants confirm that these carboxyl-carboxylate pairs participate in proton sensing. Between the acidic residues and the transmembrane pore lies a disulphide-rich 'thumb' domain poised to couple the binding of protons to the opening of the ion channel, thus demonstrating that proton activation involves long-range conformational changes.  相似文献   

12.
G-protein-coupled receptors are the largest class of cell-surface receptors, and these membrane proteins exist in equilibrium between inactive and active states. Conformational changes induced by extracellular ligands binding to G-protein-coupled receptors result in a cellular response through the activation of G proteins. The A(2A) adenosine receptor (A(2A)AR) is responsible for regulating blood flow to the cardiac muscle and is important in the regulation of glutamate and dopamine release in the brain. Here we report the raising of a mouse monoclonal antibody against human A(2A)AR that prevents agonist but not antagonist binding to the extracellular ligand-binding pocket, and describe the structure of A(2A)AR in complex with the antibody Fab fragment (Fab2838). This structure reveals that Fab2838 recognizes the intracellular surface of A(2A)AR and that its complementarity-determining region, CDR-H3, penetrates into the receptor. CDR-H3 is located in a similar position to the G-protein carboxy-terminal fragment in the active opsin structure and to CDR-3 of the nanobody in the active β(2)-adrenergic receptor structure, but locks A(2A)AR in an inactive conformation. These results suggest a new strategy to modulate the activity of G-protein-coupled receptors.  相似文献   

13.
The Na+,K+-ATPase generates electrochemical gradients for sodium and potassium that are vital to animal cells, exchanging three sodium ions for two potassium ions across the plasma membrane during each cycle of ATP hydrolysis. Here we present the X-ray crystal structure at 3.5 A resolution of the pig renal Na+,K+-ATPase with two rubidium ions bound (as potassium congeners) in an occluded state in the transmembrane part of the alpha-subunit. Several of the residues forming the cavity for rubidium/potassium occlusion in the Na+,K+-ATPase are homologous to those binding calcium in the Ca2+-ATPase of sarco(endo)plasmic reticulum. The beta- and gamma-subunits specific to the Na+,K+-ATPase are associated with transmembrane helices alphaM7/alphaM10 and alphaM9, respectively. The gamma-subunit corresponds to a fragment of the V-type ATPase c subunit. The carboxy terminus of the alpha-subunit is contained within a pocket between transmembrane helices and seems to be a novel regulatory element controlling sodium affinity, possibly influenced by the membrane potential.  相似文献   

14.
Granier S  Manglik A  Kruse AC  Kobilka TS  Thian FS  Weis WI  Kobilka BK 《Nature》2012,485(7398):400-404
The opioid receptor family comprises three members, the μ-, δ- and κ-opioid receptors, which respond to classical opioid alkaloids such as morphine and heroin as well as to endogenous peptide ligands like endorphins. They belong to the G-protein-coupled receptor (GPCR) superfamily, and are excellent therapeutic targets for pain control. The δ-opioid receptor (δ-OR) has a role in analgesia, as well as in other neurological functions that remain poorly understood. The structures of the μ-OR and κ-OR have recently been solved. Here we report the crystal structure of the mouse δ-OR, bound to the subtype-selective antagonist naltrindole. Together with the structures of the μ-OR and κ-OR, the δ-OR structure provides insights into conserved elements of opioid ligand recognition while also revealing structural features associated with ligand-subtype selectivity. The binding pocket of opioid receptors can be divided into two distinct regions. Whereas the lower part of this pocket is highly conserved among opioid receptors, the upper part contains divergent residues that confer subtype selectivity. This provides a structural explanation and validation for the 'message-address' model of opioid receptor pharmacology, in which distinct 'message' (efficacy) and 'address' (selectivity) determinants are contained within a single ligand. Comparison of the address region of the δ-OR with other GPCRs reveals that this structural organization may be a more general phenomenon, extending to other GPCR families as well.  相似文献   

15.
G protein-coupled receptors represent the largest family of membrane receptors that instigate signalling through nucleotide exchange on heterotrimeric G proteins. Nucleotide exchange, or more precisely, GDP dissociation from the G protein α-subunit, is the key step towards G protein activation and initiation of downstream signalling cascades. Despite a wealth of biochemical and biophysical studies on inactive and active conformations of several heterotrimeric G proteins, the molecular underpinnings of G protein activation remain elusive. To characterize this mechanism, we applied peptide amide hydrogen-deuterium exchange mass spectrometry to probe changes in the structure of the heterotrimeric bovine G protein, Gs (the stimulatory G protein for adenylyl cyclase) on formation of a complex with agonist-bound human β(2) adrenergic receptor (β(2)AR). Here we report structural links between the receptor-binding surface and the nucleotide-binding pocket of Gs that undergo higher levels of hydrogen-deuterium exchange than would be predicted from the crystal structure of the β(2)AR-Gs complex. Together with X-ray crystallographic and electron microscopic data of the β(2)AR-Gs complex (from refs 2, 3), we provide a rationale for a mechanism of nucleotide exchange, whereby the receptor perturbs the structure of the amino-terminal region of the α-subunit of Gs and consequently alters the 'P-loop' that binds the β-phosphate in GDP. As with the Ras family of small-molecular-weight G proteins, P-loop stabilization and β-phosphate coordination are key determinants of GDP (and GTP) binding affinity.  相似文献   

16.
Misra S  Puertollano R  Kato Y  Bonifacino JS  Hurley JH 《Nature》2002,415(6874):933-937
Specific sorting signals direct transmembrane proteins to the compartments of the endosomal-lysosomal system. Acidic-cluster-dileucine signals present within the cytoplasmic tails of sorting receptors, such as the cation-independent and cation-dependent mannose-6-phosphate receptors, are recognized by the GGA (Golgi-localized, gamma-ear-containing, ADP-ribosylation-factor-binding) proteins. The VHS (Vps27p, Hrs and STAM) domains of the GGA proteins are responsible for the highly specific recognition of these acidic-cluster-dileucine signals. Here we report the structures of the VHS domain of human GGA3 complexed with signals from both mannose-6-phosphate receptors. The signals bind in an extended conformation to helices 6 and 8 of the VHS domain. The structures highlight an Asp residue separated by two residues from a dileucine sequence as critical recognition elements. The side chains of the Asp-X-X-Leu-Leu sequence interact with subsites consisting of one electropositive and two shallow hydrophobic pockets, respectively. The rigid spatial alignment of the three binding subsites leads to high specificity.  相似文献   

17.
The magnesium ion, Mg2+, is essential for myriad biochemical processes and remains the only major biological ion whose transport mechanisms remain unknown. The CorA family of magnesium transporters is the primary Mg2+ uptake system of most prokaryotes and a functional homologue of the eukaryotic mitochondrial magnesium transporter. Here we determine crystal structures of the full-length Thermotoga maritima CorA in an apparent closed state and its isolated cytoplasmic domain at 3.9 A and 1.85 A resolution, respectively. The transporter is a funnel-shaped homopentamer with two transmembrane helices per monomer. The channel is formed by an inner group of five helices and putatively gated by bulky hydrophobic residues. The large cytoplasmic domain forms a funnel whose wide mouth points into the cell and whose walls are formed by five long helices that are extensions of the transmembrane helices. The cytoplasmic neck of the pore is surrounded, on the outside of the funnel, by a ring of highly conserved positively charged residues. Two negatively charged helices in the cytoplasmic domain extend back towards the membrane on the outside of the funnel and abut the ring of positive charge. An apparent Mg2+ ion was bound between monomers at a conserved site in the cytoplasmic domain, suggesting a mechanism to link gating of the pore to the intracellular concentration of Mg2+.  相似文献   

18.
G-protein-coupled receptor heterodimerization modulates receptor function.   总被引:29,自引:0,他引:29  
B A Jordan  L A Devi 《Nature》1999,399(6737):697-700
The opioid system modulates several physiological processes, including analgesia, the stress response, the immune response and neuroendocrine function. Pharmacological and molecular cloning studies have identified three opioid-receptor types, delta, kappa and mu, that mediate these diverse effects. Little is known about the ability of the receptors to interact to form new functional structures, the simplest of which would be a dimer. Structural and biochemical studies show that other G-protein-coupled receptors (GPCRs) interact to form homodimers. Moreover, two non-functional receptors heterodimerize to form a functional receptor, suggesting that dimerization is crucial for receptor function. However, heterodimerization between two fully functional receptors has not been documented. Here we provide biochemical and pharmacological evidence for the heterodimerization of two fully functional opioid receptors, kappa and delta. This results in a new receptor that exhibits ligand binding and functional properties that are distinct from those of either receptor. Furthermore, the kappa-delta heterodimer synergistically binds highly selective agonists and potentiates signal transduction. Thus, heterodimerization of these GPCRs represents a novel mechanism that modulates their function.  相似文献   

19.
Membrane proteins depend on complex translocation machineries for insertion into target membranes. Although it has long been known that an abundance of nonpolar residues in transmembrane helices is the principal criterion for membrane insertion, the specific sequence-coding for transmembrane helices has not been identified. By challenging the endoplasmic reticulum Sec61 translocon with an extensive set of designed polypeptide segments, we have determined the basic features of this code, including a 'biological' hydrophobicity scale. We find that membrane insertion depends strongly on the position of polar residues within transmembrane segments, adding a new dimension to the problem of predicting transmembrane helices from amino acid sequences. Our results indicate that direct protein-lipid interactions are critical during translocon-mediated membrane insertion.  相似文献   

20.
Some G-protein-coupled receptors display 'constitutive activity', that is, spontaneous activity in the absence of agonist. This means that a proportion of the receptor population spontaneously undergoes an allosteric transition, leading to a conformation that can bind G proteins. The process has been shown to occur with recombinant receptors expressed at high density, and/or mutated, but also non-mutated recombinant receptors expressed at physiological concentrations. Transgenic mice that express a constitutively active mutant of the beta2-adrenergic receptor display cardiac anomalies; and spontaneous receptor mutations leading to constitutive activity are at the origin of some human diseases. Nevertheless, this process has not previously been found to occur in animals expressing normal levels of receptor. Here we show that two isoforms of the recombinant rat H3 receptor display high constitutive activity. Using drugs that abrogate this activity ('inverse agonists') and a drug that opposes both agonists and inverse agonists ('neutral antagonist'), we show that constitutive activity of native H3 receptors is present in rodent brain and that it controls histaminergic neuron activity in vivo. Inverse agonists may therefore find therapeutic applications, even in the case of diseases involving non-mutated receptors expressed at normal levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号