首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
Ti-Cu-Zr-Fe-Nb ultrafine structure-dendrite composites were designed by inducing Nb and more Ti to a Ti-Cu-Zr-Fe glass-forming alloy composition and prepared by copper mold casting.The composite alloys consist of β-Ti dendrites and ultrafine-structured CuTi2 and CuTi phases as well as a trace amount of glassy phase.The volume fraction of β-Ti dendrites increases with the increase in content of Nb which acted as the β-Ti phase stabilizer in the alloys.The composites exhibit high compressive yield strength exceeding1200 MPa,maximum strength around 1800 MPa and low Young’s modulus around 48 GPa.The plasticity of the alloys is strongly influenced by the volume fraction and morphology of the dendritic β-Ti phase,and the compressive plastic strain was enlarged from 5.9%for the 4 at%Nb alloy to 9.2%for the 8 at%Nb alloy.The preliminary cell culture experiment indicated good biocompatibility of the composite alloys free from highly toxic elements Ni and Be.These Ti-based composite alloys are promising to have potential structural and biomedical applications due to the combination of good mechanical properties and biocompatibility.  相似文献   

2.
The influence of rolling at liquid nitrogen temperature and annealing on the microstructure and mechanical properties of Al 5083 alloy was studied in this paper. Cryorolled samples of Al 5083 show significant improvements in strength and hardness. The ultimate tensile strength increases up to 340 MPa and 390 MPa for the 30% and 50% cryorolled samples, respectively. The cryorolled samples, with 30% and 50% reduction, were subjected to Charpy impact testing at various temperatures from ?190℃ to 100℃. It is observed that increasing the percentage of reduction of samples during cryorolling has significant effect on decreasing impact toughness at all temperatures by increasing yield strength and decreasing ductility. Annealing of samples after cryorolling shows remarkable increment in impact toughness through recovery and recrystallization. The average grain size of the 50% cryorolled sample (14 μm) after annealing at 350℃ for 1 h is found to be finer than that of the 30% cryorolled sample (25 μm). The scanning electron microscopy (SEM) analysis of fractured surfaces shows a large-size dimpled morphology, resembling the ductile fracture mechanism in the starting material and fibrous structure with very fine dimples in cryorolled samples corresponding to the brittle fracture mechanism.  相似文献   

3.
The effect of Ca addition on the elemental composition, microstructure, Brinell hardness and tensile properties of Al-7Si-0.3Mg alloy were investigated. The residual content of Ca in the alloy linearly increased with the amount of Ca added to the melt. The optimal microstructure and properties were obtained by adding 0.06wt% Ca to Al-7Si-0.3Mg alloy. The secondary dendrite arm spacing (SDAS) of the primary α phase decreased from 44.41 μm to 19.4 μm, and the eutectic Si changed from coarse plates to fine coral. The length of the Fe-rich phase (β-Al5FeSi) decreased from 30.2 μm to 3.8 μm, and the Brinell hardness can reach to 66.9. The ultimate tensile strength, yield strength, and elongation of the resulting alloy increased from 159.5 MPa, 79 MPa, and 2.5% to 212 MPa, 86.5 MPa, and 4.5%, respectively. The addition of Ca can effectively refine the primary α phase and modify the eutectic Si phase, likely because Ca enrichment at the front of the solid-liquid interface led to undercooling of the alloy, reduced the growth rate of the primary α phase, and refined the grain size. Also, it could increase the latent heat of crystallization, undercooling, and the nucleation rate of eutectic Si, which was beneficial to the improvement of the morphology of eutectic Si.  相似文献   

4.
The effect of rolling temperature on both two- and single-phase regions and annealing in a temperature range of 700–950°C on the microstructure and mechanical properties of Ti?5Al?4V?2Fe?1Mo alloy was investigated. The results indicated that the best balance of strength and ductility is obtained by rolling in the two-phase region due to the globularization of the alpha phase and increase in its volume fraction. After rolling in the two-phase region, the ductility of the specimens annealed at 700 to 800°C increased because of the finer size and globularized alpha phase, while the reduction in strength was attributed to a decrease in the alpha phase volume fraction. However, at 950°C, the strength increased and ductility dropped by the formation of acicular alpha phase due to an increase in the phase boundary area. Annealing and aging after rolling in the beta-phase region increased the strength and decreased the ductility, which is attributed to the formation of a secondary alpha phase. A combination of favorable yield strength (1113 MPa) and elongation (13.3%) was obtained through rolling at 850°C followed by annealing at 750°C and aging at 570°C.  相似文献   

5.
The effect of rolling temperature on both two-and single-phase regions and annealing in a temperature range of 700–950°C on the microstructure and mechanical properties of Ti-5 Al-4 V-2 Fe-1 Mo alloy was investigated. The results indicated that the best balance of strength and ductility is obtained by rolling in the two-phase region due to the globularization of the alpha phase and increase in its volume fraction. After rolling in the two-phase region, the ductility of the specimens annealed at 700 to 800°C increased because of the finer size and globularized alpha phase, while the reduction in strength was attributed to a decrease in the alpha phase volume fraction. However, at 950°C, the strength increased and ductility dropped by the formation of acicular alpha phase due to an increase in the phase boundary area. Annealing and aging after rolling in the beta-phase region increased the strength and decreased the ductility, which is attributed to the formation of a secondary alpha phase. A combination of favorable yield strength(1113 MPa) and elongation(13.3%) was obtained through rolling at 850°C followed by annealing at 750°C and aging at 570°C.  相似文献   

6.
Using coal fly ash slurry samples supplemented with different amounts of Al2O3, we fabricated mullite-based porous ceramics via a dipping-polymer-replica approach, which is a popular method suitable for industrial application. The microstructure, phase composition, and compressive strength of the sintered samples were investigated. Mullite was identified in all of the prepared materials by X-ray diffraction analysis. The microstructure and compressive strength were strongly influenced by the content of Al2O3. As the Al/Si mole ratio in the starting materials was increased from 0.84 to 2.40, the amount of amorphous phases in the sintered microstructure decreased and the compressive strength of the sintered samples increased. A further increase in the Al2O3 content resulted in a decrease in the compressive strength of the sintered samples. The mullite-based porous ceramic with an Al/Si molar ratio of 2.40 exhibited the highest compressive strength and the greatest shrinkage among the investigated samples prepared using coal fly ash as the main starting material.  相似文献   

7.
AZ91 magnesium alloy was subjected to a deep cryogenic treatment. X-ray diffraction (XRD), scanning electronic microscopy (SEM), and transmission electronic microscopy (TEM) methods were utilized to characterize the composition and microstructure of the treated samples. The results show that after two cryogenic treatments, the quantity of the precipitate hardening β phase increases, and the sizes of the precipitates are refined from 8–10 μm to 2–4 μm. This is expected to be due to the decreased solubility of aluminum in the matrix at low temperature and the significant plastic deformation owing to internal differences in thermal contraction between phases and grains. The polycrystalline matrix is also noticeably refined, with the sizes of the subsequent nanocrystalline grains in the range of 50–100 nm. High density dislocations are observed to pile up at the grain boundaries, inducing the dynamic recrystallization of the microstructure, leading to the generation of a nanocrystalline grain structure. After two deep cryogenic treatments, the tensile strength and elongation are found to be substantially increased, rising from 243 MPa and 4.4% of as-cast state to 299 MPa and 5.1%.  相似文献   

8.
C–Mn steels prepared by annealing at 800°C for 120 s and overaging at 250–400°C were subjected to pre-straining (2%) and baking treatments (170°C for 20 min) to measure their bake-hardening (BH2) values. The effects of overaging temperature on the microstructure, mechanical properties, and BH2 behavior of 600 MPa cold-rolled dual-phase (DP) steel were investigated by optical microscopy, scanning electron microscopy, and tensile tests. The results indicated that the martensite morphology exhibited less variation when the DP steel was overaged at 250–350°C. However, when the DP steel was overaged at 400°C, numerous non-martensite and carbide particles formed and yield-point elongation was observed in the tensile curve. When the overaging temperature was increased from 250 to 400°C, the yield strength increased from 272 to 317 MPa, the tensile strength decreased from 643 to 574 MPa, and the elongation increased from 27.8% to 30.6%. Furthermore, with an increase in overaging temperature from 250 to 400°C, the BH2 value initially increases and then decreases. The maximum BH2 value of 83 MPa was observed for the specimen overaged at 350°C.  相似文献   

9.
In order to protect Nb-Ti-Si based ultrahigh temperature alloy from oxidation, pack cementation processes were utilized to prepare Ce and Y jointly modified silicide coatings. The Ce and Y jointly modified silicide coating has a double-layer structure: a relatively thick (Nb, X)Si2 (X represents Ti, Cr and Hf elements) outer layer and a thin (Ti, Nb)5Si4 transitional layer. The pack cementation experiments at 1150 ℃ for 8 h proved that the addition of certain amounts of CeO2 and Y2O3 powders in the packs distinctly influenced the coating thickness, the contents of Si, Ce and Y in the (Nb, X)Si2 outer layers, and the density of cavities in the coatings. In order to study the effects of Ce and Y joint modification in the silicide coatings, both only Ce and only Y modified silicide coatings were also prepared for comparison. The mechanisms of the beneficial effects of Ce and Y are discussed. A pack mixture containing 1.5CeO2-0.75Y2O3 (wt%) powders was employed to investigate the growth kinetics of the Ce and Y jointly modified silicide coating at 1050, 1150 and 1250 ℃. It has been found that the growth kinetics obeyed parabolic laws and the parabolic rate constants were 109.20 mm2/h at 1050 ℃, 366.75 mm2/h at 1150 ℃ and 569.78 mm2/h at 1250 ℃, and the activation energy for the growth of the Ce and Y jointly modified silicide coating was 197.53 kJ/mol.  相似文献   

10.
In this study, we have investigated how the dielectric loss tangent and permittivity of AlN ceramics are affected by factors such as powder mixing methods, milling time, sintering temperature, and the addition of a second conductive phase. All ceramic samples were prepared by spark plasma sintering (SPS) under a pressure of 30 MPa. AlN composite ceramics sintered with 30wt%–40wt% SiC at 1600℃ for 5 min exhibited the best dielectric loss tangent, which is greater than 0.3. In addition to AlN and β-SiC, the samples also contained 2H-SiC and Fe5Si3, as detected by X-ray difraction (XRD). The relative densities of the sintered ceramics were higher than 93%. Experimental results indicate that nano-SiC has a strong capability of absorbing electromagnetic waves. The dielectric constant and dielectric loss of AlN-SiC ceramics with the same content of SiC decreased as the frequency of electromagnetic waves increased from 1 kHz to 1 MHz.  相似文献   

11.
In this work, pure Nb, Nb5Si3 and Laves Cr2Nb compound powders were used as raw materials to prepare Nb-Si-Cr ternary alloys by spark plasma sintering (SPS). A comprehensive estimation of the microstructure and properties, including room temperature fracture toughness, high temperature strength and oxidation resistance, of the Nb-Si-Cr ternary alloys as a function of the Nb/Nb5Si3/Cr2Nb phase volume fraction combinations was conducted. The results showed that Nb-Si-Cr ternary samples with the relative density larger than 98.42% were obtained by SPS processing, and the samples all consisted of Nb, Nb5Si3 and Cr2Nb phases that were distributed homogeneously. The fracture toughness KQ of the Nb/Nb5Si3/Cr2Nb microstructure, which was dominated by the Nb phase, naturally increased with the Nb fraction. As expected, the room-temperature Vickers hardness and the high-temperature strength of the bulk alloys increased monotonically with the increasing of the stiffening Nb5Si3 fraction. Interestingly, the binary Cr2Nb phase played a positive role in the high temperature strength and oxidation resistance. Finally, the fracture modes of the typical Nb/Nb5Si3/Cr2Nb microstructures under bending and compression conditions at room and high temperatures as well as the oxidation mechanism are described and discussed.  相似文献   

12.
The phase co mpositions, microstructure and especi ally phase i nterfaces in the as-cast and heat-treated Nb– Ti–Si based ultrahigh temperature alloys have been investigated. It is shown that β(Nb,X)5Si3 and γ(Nb,X)5Si3 are the primary p hase s in the Nb–22Ti–16Si–5Cr–5Al (S1) (at%) and Nb–20Ti–16Si–6C r–4Al–5Hf–2B–0.06Y (S2) (at% ) alloys, respectively. The Nb solid solution (Nbss) is the primary phase in Nb–22Ti–14Si–5Hf–3Al–1. 5B –0.0 6Y (S3) (at%) alloy . An orientation relationship between Nbss and γ(Nb,X)5Si3 was determine d to be (1-10)Nb//(101-0)γ and [111]Nb//[0001]γ in the as-cast S2 and S3 alloys. Some original β(Nb,X)5Si3 transfor med into α(Nb,X)5Si3 because Al and Cr diffused from the β(Nb,X)5Si3 to Nbss during heattreatment at 1500 °C for 50 h in the S1 alloy. Mean while, Ti diffused from Nbss to β(Nb,X)5Si3, which induced a Ti to generate near the interface between Nbss and Ti-rich β(Nb,X)5Si3. The orientation relationship between the newl y-formed a Ti and previous Nbss was (110 )Nb//(1-10-1) αTi and [001]Nb//(12-3-1)αTi. Among the ( Nb,X)5Si3 phases , the contents o f Cr and Al in β(Nb,X)5Si3 are n earl y the same as those in γ(Nb,X)5Si3 but obviously hi gher than those in the α(Nb,X)5Si3, where as the content of Si in α(Nb,X)5Si3 is nearly the same a s that in γ(Nb,X)5Si3 but higher than that in the β(Nb,X)5Si3  相似文献   

13.
The effect of B2O3 addition on the aqueous tape casting, sintering, microstructure and microwave dielectric properties of Li2O-Nb2O5-TiO2 ceramics has been investigated. The tape casting slurries exhibit a typical shear-thinning behavior without thixotropy, but the addition of B2O3 increases the viscosity of the slurries significantly. It was found that doping of B2O3 can decrease the tensile strength, strain to failure and density of the green tapes. The sintering temperature could be lowed down to 900℃ with the addition of 2 wt% B2O3 due to the liquid phase effect. No secondary phase is observed. The addition of B2O3 does not induce much degradation on the microwave dielectric properties. Optimum microwave dielectric properties of εr 67, Q×f 6560 GHz are obtained for Li2O-Nb2O5-TiO2 ceramics containing 2 wt% B2O3 sintered at 900 1C. It represents that the ceramics could be promising for multilayer low-temperature co-fired ceramics (LTCC) application.  相似文献   

14.
The wettability of V-active PdCo-based alloys on Si3N4ceramic was studied with the sessile drop method. And the alloy of Pd50.0–Co33.7–Ni4.0–Si2.0–B0.7–V9.6(wt%),was developed for Si3N4ceramic joining in the present investigation. The rapidly-solidified brazing foils were fabricated by the alloy Pd50.0–Co33.7–Ni4.0–Si2.0–B0.7–V9.6. The average room-temperature three-point bend strength of the Si3N4/Si3N4joints brazed at 1453 K for 10 min was 205.6 MPa,and the newly developed braze gives joint strengths of 210.9 MPa,206.6 MPa and 80.2 MPa at high temperatures of 973 K,1073 K and 1173 K respectively. The interfacial reaction products in the Si3N4/Si3N4joint brazed at 1453 K for10 min were identified to be VN and Pd2Si by XRD analysis. Based on the XEDS analysis result,the residual brazing alloy existing at the central part of the joint was verified as Co-rich phases,in which the concentration of element Pd was high up to 18.0–19.1 at%. The mechanism of the interfacial reactions was discussed. Pd should be a good choice as useful alloying element in newer high-temperature braze candidates for the joining of Si-based ceramics.  相似文献   

15.
The composition characteristics of maraging stainless steels were studied in the present work investigation using a cluster-plus-glue-atom model. The least solubility limit of high-temperature austenite to form martensite in basic Fe–Ni–Cr corresponds to the cluster formula [NiFe12]Cr3,where NiFe12is a cuboctahedron centered by Ni and surrounded by 12 Fe atoms in FCC structure and Cr serves as glue atoms. A cluster formula [NiFe12](Cr2Ni) with surplus Ni was then determined to ensure the second phase(Ni3M) precipitation,based on which new multicomponent alloys [(Ni,Cu)16Fe192](Cr32(Ni,Mo,Ti,Nb,Al,V)16) were designed. These alloys were prepared by copper mould suction casting method,then solid-solution treated at 1273 K for 1 h followed by water-quenching,and finally aged at 783 K for 3 h. The experimental results showed that the multi-element alloying results in Ni3M precipitation on the martensite,which enhances the strengths of alloys sharply after ageing treatment. Among them,the aged [(Cu4Ni12)Fe192](Cr32(Ni8.5Mo2Ti2Nb0.5Al1V1)) alloy(Fe74.91Ni8.82Cr11.62Mo1.34Ti0.67Nb0.32Al0.19V0.36Cu1.78wt%) has higher tensile strengths with YS?1456 MPa and UTS?1494 MPa. It also exhibits good corrosion-resistance in 3.5 wt% NaCl solution.  相似文献   

16.
A low cost chemical co-precipitation method was employed to fabricate nanoscale Al_2O_3-GdAlO_3-ZrO_2 powder with eutectic composition. A careful control of reaction conditions was required during the preparation. The synthesized nanopowders exhibited a particle size of 20-200 nm, and were highly dispersive and uniform. The results showed that calcination temperature had an important influence on the phase constituents of the nanopowders. With increasing the calcination temperature, a phase transformation from θ-Al_2O_3 to α-Al_2O_3 and a thermal decomposition from Gd_3 Al_5O_(12)(GdAG) to GdAlO_3 and α-Al_2O_3 occurred in sequence. A calcination temperature of 1300 ℃ was needed for the crystallization of α-Al_2 O_3. These nanosized powders were consolidated via hot pressing to produce a fully densified ceramic composite with eutectic composition. The Al_2O_3-GdAlO_3-ZrO_2 ceramic hot-pressed at 1500 ℃ exhibited a relative density of 99.4%, a flexural strength of 485 MPa and a fracture toughness of 6.5 MPa m~(1/2). The ceramic had a thermal conductivity of 1.9 W m K~(-1) at 1200 ℃ and a thermal expansion coefficient of 9.49 ×10~(-6) K~(-1) at 1100 ℃.  相似文献   

17.
CuO-doped CaSiO3–1 wt% Al2O3 ceramics were synthesized via a traditional solid-state reaction method, and their sintering behavior,microstructure and microwave dielectric properties were investigated. The results showed that appropriate CuO addition could accelerate the sintering process and assist the densification of CaSiO3–1 wt% Al2O3 ceramics, which could effectively lower the densification temperature from1250 1C to 1050 1C. However, the addition of CuO undermined the microwave dielectric properties. The optimal amount of CuO addition was found to be 0.8 wt%, and the derived CaSiO3–Al2O3ceramic sintered at 1100 1C presented good microwave dielectric properties of εr?7.27,Q f?16,850 GHz and τf? 39.53 ppm/1C, which is much better than those of pure CaSiO3 ceramic sintered at 1340oC(Q f?13,109 GHz).The chemical compatibility of the above ceramic with 30 Pd/70 Ag during the cofiring process has also been investigated, and the result showed that there was no chemical reaction between palladium–silver alloys and ceramics.& 2014 Chinese Materials Research Society. Production and hosting by Elsevier B.V. All rights reserved.  相似文献   

18.
Nanocrystalline soft magnetic materials are widely used in power electronic applications due to their high permeability,magnetization and low core loss.In this paper,Fe_(73.5)Cu_1Nb_3Si_(15.5)B_7(at%)nanocrystalline alloy ribbons,with ultra-thin thickness of 14μm,and also 18 and 22μm,were prepared by a planar flow casting method with a single roller device.Soft magnetic properties of these ribbons were analyzed after nanocrystallization annealing.The experiments were conducted on toroidal samples using IWATSU B-H Analyzer over a frequency range of 10–100 kHz,at induction amplitudes of 100–500 m T,at room temperature.It was found that the excess eddy current loss P_(ex)was the dominant factor in the overall core loss above 10 k Hz.The toroidal samples made of the 14μm thickness ribbon exhibit very low total core loss of 48 W/kg at a frequency of100 kHz and magnetic flux density of 300 mT.The ratio of the P_(ex)was up to 89%at 100 kHz.The ribbon with lower thickness exhibits lower P_(ex)and therefore lower total core loss.The domain structure evidences were found.It indicates that the ribbons with small thickness are preferable for application in high frequency condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号