首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 312 毫秒
1.
PID控制器参数决定着系统控制效果,因此需要在参数空间中选择最佳的参数,使系统控制性能达到最优。果蝇优化算法在计算精度和运算速度上比传统方法有着显著的提高,在解空间上可以快速高效的得到全局最优解,但是也极易陷入局部最优。自动电压调节器(AVR)系统通常采用PID控制器,为了更加有效地获得PID参数进行在线调整,仿真结果表明改进的果蝇优化算法比原来的算法在PID控制器中获得了更好的控制性能,改进算法具有一定的实用价值。  相似文献   

2.
为进一步提高模糊PID控制器应用于关节机器人轨迹跟踪控制的效果,本文提出了一种改进的多目标粒子群(PSO)算法优化机器人轨迹跟踪模糊PID控制器的方法。首先,设计了一种关节机器人轨迹跟踪模糊PID控制器;其次,考虑控制器输出力矩和轨迹跟踪控制偏差2个优化目标,设计了改进多目标PSO算法实现模糊PID控制器隶属函数与模糊规则的优化调整;最后,分别采用多目标PSO算法和改进多目标PSO算法优化轨迹跟踪模糊PID控制器获得了2个优化目标的向量集合,并对比分析了优化结果。实验结果表明,所设计的改进多目标PSO算法具有更优的非支配解集,验证了该算法优化机器人轨迹跟踪模糊PID控制器的有效性和优越性。  相似文献   

3.
微粒群算法是近年来提出的一种新型群体智能优化算法,它具有结构简单,收敛速度快,所需参数少等优点.为改善传统PID参数整定问题,提出了基于微粒群算法整定PID控制器参数的优化设计方法.通过对双容水箱建模并与传统整定方法进行仿真比较.仿真结果表明,采用微粒群算法来优化PID参数,可以获得综合性能良好的PID控制器参数.对控制器的设计具有一定的指导意义.  相似文献   

4.
针对参数时变,且含有多个目标函数的PID控制器设计,提出了一种基于参考点的时变参数不可测动态多目标优化遗传算法.该算法在常规动态多目标优化遗传算法基础上,加入了参考点及局部搜索和种群更新机制,以实现对不同环境及环境不可测情况下PID控制器参数的优化,用典型测试函数将该算法与DNSGA2-A算法进行比较,验证了算法的有效性.在PID控制器设计部分,首先建立PID控制器时变动态多目标优化模型,将多目标PID控制器设计问题转化为动态多目标优化问题;然后建立参考点,定义基于参考点占优帕累托支配关系,通过局部搜索和种群更新机制对种群进行处理,优化PID参数;最后将该方法应用于柴油机优化问题实例,将误差和方差作为优化目标,对PID控制器的3个参数进行优化,验证了方法的有效性.  相似文献   

5.
针对PID控制器的参数整定和优化问题,本文提出一种基于免疫克隆算法的优化PID控制器参数的方法.该算法与人体免疫系统机制相似,通过克隆、选择和高频变异,以获得最优的目标函数值,进而获得最优的PID控制器.仿真实验结果表明该方法明显优于遗传算法和粒子群算法,同时证明了利用免疫克隆算法进行PID调节的有效性.  相似文献   

6.
针对具有反向响应特性的高阶过程,提出了一种分数阶PID控制器设计方法.为了便于控制器设计,采用一种改进的微粒群优化算法对高阶过程模型进行简化处理,在此基础上,根据内模控制原理设计分数阶PID控制器,该控制器仅有一个可调参数,有效降低了控制器整定的复杂度,并根据最大灵敏度指标推导出控制器参数整定的解析表达式,克服了参数选择的盲目性.仿真结果表明,该方法可使系统具有良好的设定值跟踪、扰动抑制特性以及克服参数摄动的鲁棒性.  相似文献   

7.
针对四旋翼飞行器具有非线性,强耦合性,多输入的欠驱动系统的特点,研制出既能精确控制飞行器姿态,又具有较强抗干扰和环境自适应能力的控制器。为了达到更好的飞行效果,采用了传统的PID控制算法,但实际应用中需要对PID参数进行优化,提出改进的PSO算法和遗传算法相结合的优化控制方法。为了优化PID参数,首先对飞行器进行动力性建模,再利用改进的PSO算法和遗传算法作PID参数优化。仿真和飞行实践的数据表明,相对于标准的PSO算法,飞行器有更好的鲁棒性和控制效果。  相似文献   

8.
针对传统的Z-N法得到的PID参数,难以获得最优的控制性能,提出一种基于果蝇优化算法的PID控制器参数优化的方法。果蝇优化算法具有控制参数少、实现简单和优化性能良好的优点,运用此算法设计出PID控制器,与Z-N法和遗传算法设计的PID控制器进行比较。仿真结果表明:果蝇优化算法的PID控制器比Z-N法和遗传算法的PID控制器所得结果更优,比遗传算法具有较快的收敛速度,并应用于环形一级倒立摆系统的稳定控制问题,达到较好的控制效果。  相似文献   

9.
为了改善小数据集下BN结构学习中对数据利用不充分的缺陷, 提高贝叶斯结构学习算法的寻优效率,提出基于改进蚁狮优化的贝叶斯网络结构学习算法。首先,通过互信息约束初步构建网络,并对蚁狮算法初始化;其次,为了有效利用小数据集,用改进的sigmoid函数对迭代中的矩阵元素进行二值转换;为了进一步提高蚁狮算法的搜索效率,用生物地理算法中的迁移、变异、清除算子抽取更换个别蚂蚁;最后,结合蚁狮算法的更新机制寻找最优解。实验结果表明,文中算法寻优效率高、收敛速度快,能跳出局部最优,具有更高的准确性。  相似文献   

10.
目的 为提高带式输送机PID控制器的动态性能,对其参数进行优化.方法 采用改进的遗传禁忌算法,通过MATLAB/SIMULINK仿真软件,实现系统仿真.结果 将改进的遗传禁忌算法应用到PID控制器中.结论 研究表明采用改进遗传禁忌算法的PID控制器可以提高系统的动态特性.  相似文献   

11.
针对汽车主动悬架比例-积分-微分控制器(proportional-integral-derivative,PID)参数选择问题,传统PID控制参数整定具有一定的盲目性.设计了粒子群优化算法,目标函数根据悬架性能指标建立,利用粒子群优化算法,优化了PID控制器中的参数.结果表明,与优化前PID控制的主动悬架相比,采用粒子...  相似文献   

12.
一种基于遗传算法的单神经元PID控制器参数优化   总被引:1,自引:0,他引:1  
文章分析了神经元PID控制器存在的问题,提出了一种用遗传算法对单神经元控制器进行参数寻优,并利用种群数N和交换概率Pc逐次递减的方法来提高计算效率和收敛速度,在搜索空间内获得全局最优点的方法。试验仿真结果表明,基于遗传算法的单神经元PID控制器参数优化方法能获得很好的控制效果。  相似文献   

13.
通过分析传统二自由度PID控制器参数整定过程中存在的不足,结合模拟退火算法的特点,提出了一种改进的模拟退火算法,并将其成功地应用于二自由度PID控制器的参数优化设计.仿真结果表明,所设计的二自由度PID控制器同时具有良好的目标值跟踪特性和干扰抑制特性.在隧道式炉二自由度PID控制系统设计中获得了良好的控制效果,从而说明了该方法的有效性.  相似文献   

14.
基于蚁群算法的支持向量机参数优化   总被引:5,自引:0,他引:5  
针对支持向量机的参数对分类性能的影响,探讨了基于蚁群算法的支持向量机参数优化方法,建立了支持向量机参数优化模型,给出了基于网格划分策略的连续蚁群算法,并将其用于优化模型求解,通过对支持向量机的惩罚因子和径向基核函数进行优化,使支持向量机的分类性能最优.通过仿真和应用实例,验证了方法的有效性,得到了95%以上的分类正确率.  相似文献   

15.
基于PSO算法的PID控制参数优化   总被引:1,自引:0,他引:1  
微粒群算法(PSO)是一种随机全局优化技术,算法通过微粒间的相互作用发现复杂搜索空间中的最优区域.但基本微粒群算法不能保证全局收敛,本文将改进的PSO算法(SPSO)应用于PID控制器的参数优化.经仿真证明PSO算法参数优化的有效性.  相似文献   

16.
为了提高既有线路整正维修效率以及满足铁路快速发展对线路高平顺性的要求,结合蚁群算法在空间组合优化的优良性能,研究了基于蚁群算法的既有线平面多曲线整体整正优化设计方法.首先利用空间曲线拟合算法,结合平面线形的曲率变化特征,采用概略分段与迭代精确分段相结合的方式,确定初始交点坐标及曲线参数信息.以既有线所有初始交点坐标为基准,进行交点坐标网格划分,运用蚁群算法全局寻优的方式得到最优的交点组合.逐步缩小网格进行蚁群寻优,最终得到满足各类约束的线形参数组合及最优拨道量值,实现线路平面整正的整体优化算法设计.并结合实测数据进行相关计算分析,计算结果显示蚁群优化算法较传统的优化设计方法在获取最优线路参数,实现整体拨道量最小方面可以获取满意效果.  相似文献   

17.
针对数字共焦显微技术中的压电陶瓷物镜驱动系统,分析了模糊PID控制器的控制性能,提出了离线优化思想,将初始参数的优化从在线实时调整中分离出来,在离线状态下预先采用遗传算法完成全局优化,以减小在线调整时间及调整次数,提高响应速度. 经优化的初始参数配置于模糊PID控制中,对系统进行在线实时反馈调整,控制系统进行步进定位驱动. 在Matlab环境下的实验结果表明,该方法显著提高了系统的控制精度和响应速度,为驱动系统的进一步研究提供理论依据.   相似文献   

18.
多目标优化问题一直是控制领域的重要研究问题。本文主要利用基本遗传算法来解决其中的参数优化问题。采用误差绝对值时间积分性能指标作为参数选择的最小目标函数,采用轮盘转的方法提高遗传算法的全局优化能力。最后,通过MATLAB仿真结果表明,根据遗传算法寻优设计的PID控制器比人为的通过调试或经验取得的数据更有说服力,控制效果更好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号