首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
为了避免NURBS曲线单向插补算法中加速度突变过大、减速点定位不准确、低速拖尾补偿等弊端,提出一种S型速度规划下的双向插补算法.基于曲线预插补点自适应速度集合筛选出减速终点;利用正反插补的互逆性简化了S型速度规划计算;详细论述了实时插补流程;在双向插补交叉区域,设计一种基于加速度微小突变的简易迭代方法修正预插补参数.通过MATLAB仿真实验表明该算法计算量小,插补点速度和加速度平稳,插补曲线满足加工误差要求.  相似文献   

2.
泰勒展开NURBS曲线插补算法   总被引:6,自引:0,他引:6  
分别利用一阶、二阶泰勒展开公式逼近NURBS样条参数,对NURBS曲线插补算法进行了研究.算例证明该算法可以获得与指令速度几乎完全一致的插补结果.给出了一阶、二阶泰勒展开方法的速度波动与曲率的关系,弦误差与插补周期的关系.指出泰勒方法NURBS曲线插补对于误差控制是一种开环方法,但是它忽略了机械系统的输出能力,当机械系统的输出能力不足时将会出现较大的加工误差.  相似文献   

3.
一种椭圆插补的改进算法   总被引:1,自引:0,他引:1  
针对现有基于圆心角分割的椭圆插补算法插补公式复杂,影响数控插补加工的实时插补速度的问题,在时间分割插补算法原理的基础上,提出一种基于圆心角分割的椭圆插补改进算法,推导出改进的插补公式,得到具体的算法流程.通过实例计算与分析表明,在同一NC平台上,该改进算法能够达到基于圆心角分割的椭圆插补类似算法的插补精度,并具有更好的实时性.  相似文献   

4.
传统NURBS(Non-uniform rational B-spline,NURBS)曲线插补算法忽略了弧长与曲线的参数关系,造成无法在线对速度进行实时调节,针对这个问题,该文提出一种NURBS曲线插补的离散比例积分器速度规划算法.该方法分2个步骤实现速度规划:①使用数值方法计算NURBS曲线弧长及给定速度的运行时间;二、使用具有加减速的对称性和信号转换功能的离散比例积分器,完成对NURBS曲线插补的在线速度规划.在离散比例积分器的速度规划方法中,起始段、结束段的轨迹速度能够得到实时控制,系统以不超过机床要求的加速度运行.实验结果表明,该文速度规划算法能有效地满足系统约束,保证机床平稳运行.另外,相较于其他算法,该文算法在插补精度、插补实时性及速度波动率性能方面优于现有方法,说明该文方法的有效性和先进性.  相似文献   

5.
NURBS曲线机床动力学特性自适应直接插补   总被引:5,自引:0,他引:5  
提出了一种具有机床动力学自适应能力与曲线前瞻控制能力的NURBS曲线插补算法.算法通过分析加工曲线的几何特征与机床的动态特性,获取曲线插补的前瞻控制信息;并用于指导实时插补.整个插补分两个阶段,首先通过曲线性态与机床特性,运用遗传算法,获取曲线中特殊点的信息,作为曲线插补的前瞻控制信息;然后依据此信息,在实时插补中对插补速度进行校验调整,实现高速曲线插补.该算法较目前同类算法有三个优点:具有机床适应性,能在不同的机床上均可加工出高质量的工件;加工轮廓精度高,进给速度可随曲线曲率自适应调整,保证了插补的轮廓精度;速度波动小,既保证了加工件的表面质量,又避免对机床造成过量冲击.  相似文献   

6.
在数控加工中,为了满足较高的加工精度和保持恒定的进给速度要求,提高数控加工复杂零件的能力,数控系统插补器需要采用较复杂的插补算法,其计算量大,耗时多,影响加工速度.针对这一问题,根据参数曲线数控插补原理,指出了Taylor展开算法和迭代算法,给定曲线,利用当前弦长和当前插补点,精确算出下一插补点.在迭代次数和迭代误差都小于设定值时结束迭代,即可算出下一插补点,且保持当前点和速度,否则继续迭代直到满足要求为止,给出了基于迭代算法的曲线实时插补进给速度的控制方法.仿真实例结果表明,提出的算法能够满足各种不同参数曲线的加工.与常规插补算法相比,该算法通用性强,计算量小,进给误差小,计算精度高,提高了加工效率.  相似文献   

7.
基于八方向插补算法,提出一种改进的逐点比较插补算法。通过最大插补误差分析,利用解析求解、数值比较及计算机运算,得到一种插补精度较高、运算速度较快、速率较平稳的偏差计算方法。  相似文献   

8.
根据机床动力学性能,提前预测NURBS曲线插补时的速度极小值点,以这些点为基准将曲线分段,同时估算每条子曲线的长度.利用捷度阶跃式7段S型加减速规律对每条子曲线进行连续时间域下的速度规划,以插补总时间周期化为原则对连续时间域下的加减速各阶段运行时间做周期化离散处理.为了减小子曲线间衔接速度的波动,提出连续时间域运行时间重新规划的方法.为了减小NURBS曲线实时插补时的速度波动率,提出利用反向二次插补法进行实时插补计算,该方法不需要迭代计算且计算精度较高.仿真实验结果表明,连续时间域重新规划和周期化离散处理方法能够实现捷度满足机床性能要求的S型加减速速度规划,且实时插补阶段的速度波动率能够达到10-6级.  相似文献   

9.
针对复杂轮廓曲线数控加工高速高精度控制要求,基于B样条曲线理论,提出了3次B样条曲线插补算法,通过预判加工速度,采用3次B样条曲线不同段间连接点的切矢量求解,建立以时间为参数的样条曲线方程,同步完成插补轨迹规划和速度规划.经过仿真分析表明,该算法的计算效率高,可满足加工精度与速度平滑要求.  相似文献   

10.
为了高速插补连续小线段轮廓,开发了一种新型的速度规划算法。该算法首先根据小线段的变化规律定义了线段过渡模型,以描述连续小线段轮廓的曲率特征;然后根据曲率特征优化了小线段各衔接点的速度;最后对衔接点速度进行三次样条插值处理以生成连续光滑的速度曲线。该算法使得速度跟随曲率的变化,即由轮廓的低曲率部分向高曲率部分过渡时减小速度,由轮廓的高曲率部分向低曲率部分过渡时增大速度,从而即保证了加工精度,也提高了加工效率。  相似文献   

11.
文章将经典牛顿方法预测,隐式中点牛顿迭代格式校正,得到一种新的求解非线性代数方程的改进的修正牛顿迭代格式,该方法具有较快的收敛速度,并用数值实例来验证该方法.数值实验表明,该算法比牛顿迭代和文献中的修正牛顿迭代格式收敛速度要快.  相似文献   

12.
针对传统的NURBS曲线加工过程中插补算法插补参数计算精度低、实时性不高以及加速度过大对机床造成的冲击大的问题,提出了基于Runge-Kutta的NURBS曲线实时前瞻插补算法.该算法采用经典Runge-Kutta方法计算插补参数,基于弓高误差和法向加速度约束条件自动调整进给速度,根据进给步长预期值与实际值的偏差进行参数校正.由粗插补得到的离线数据寻找进给速度极值点,并对曲线进行前瞻分段,找到各前瞻插补区间上的首末速度敏感点.根据敏感速度与插补距离之间的关系重新进行加减速控制,避免速度急剧变化,从而满足机床的加减速性能要求.最后,通过Matlab仿真验证了算法的有效性.  相似文献   

13.
针对复杂曲面五轴加工直线圆弧插补的不足,对五轴加工NURBS插补算法进行相关研究,同时对NURBS插补过程中插补点的曲率分析计算,推导出插补误差与进给速度的关系,实现用进给速度对插补误差自适应地调整。最后,针对双转台五轴数控机床,基于IMSPOST开发了具有NURBS插补的专用后置处理器,实现了NC 程序的输出。实验结果表明:该技术方法提高了刀具运动平稳性和加工精度,优化了加工精度与加工效率,为五轴NURBS插补加工提供了理论指导。  相似文献   

14.
结合匀变速DDA精插补算法、变插补周期技术和实时前瞻技术,提出了一种新的微线段直接插补算法.采用两级插补模式,粗插补由速度规划和实时前瞻任务构成,精插补采用匀变速DDA精插补算法.首先通过正、反向速度规划,计算各微线段允许的最大拐角速度;其次,根据前瞻数据量和微线段允许速度实时调整实际拐角速度;最后,调用匀变速DDA精插补算法实现脉冲输出.每个微线段不再由粗插补分割为更小的微线段,而是直接由精插补器来实现插补,故算法简单,精度高.实测结果表明,该算法无理论误差,精度高,加工效率较高.  相似文献   

15.
预估校正算法是一类典型的NURBS插补算法,稳定的预估公式和明确的迭代收敛条件是该算法的关键;数学推导证明,现行的二阶预估公式不能保证插补过程中参数u的单调性,插补时将出现方向反转现象;该方法的迭代收敛条件不可能总是成立,在NURBS曲线尖角拐角处可能造成迭代过程发散。本文提出的一阶预估公式可以保证插补过程参数u的单调性,消除插补方向反转现象,和二阶预估公式比较,迭代次数有所增加,速度精度不变。  相似文献   

16.
基于Stewart机构并联加工机的插补算法   总被引:2,自引:1,他引:1  
目的 研究基于Stewart机构的并联加工机的插补算法。方法 利用通常的时间分割插补算法思想和并联加工机构逆运动学模型,求解刀具运动轨迹与6根伸缩杆之间的关系,导出一种插补算法,并采用面向对象的程序设计方法编制仿真软件,通过计算机仿真验证该插补算法的可用性。结果与结论 对球面类和双曲面类零件加工过程仿真结果表明,所提出的插补算法是正确的,实用的,为并联加工机提供一种新的可行的插补算法。  相似文献   

17.
改进的预估校正NURBS实时插补算法   总被引:2,自引:0,他引:2  
现行的NURBS插补二阶预估公式不能保证插补过程中参数u的单调性,可能会出现插补方向反转,且其迭代过程在NURBS曲线尖角拐角处不一定收敛.为此,文中提出了一阶预估校正算法:采用一阶预估公式计算NURBS参数u的估计值,再迭代计算NURBS曲线的坐标点,直到满足插补精度为止.测试结果表明,文中算法可以保证插补过程中参数u的单调性,消除插补方向反转的现象,其速度精度与二阶预估公式相同,但迭代次数有所增加.  相似文献   

18.
一种连续小线段高速插补算法   总被引:3,自引:0,他引:3  
为使自行研发的机床数控系统具有连续小线段高速加工能力,该文以离散的方法建立了一种全新的插补算法。该算法以级数求和的方法推导了S型加减速控制模型,并以小线段夹角为参变量控制拐点通过速度建立了小线段速度衔接模型,在此基础上,算法将插补过程分解为插补预处理及插补点计算两个步骤,预处理中对小线段进行速度规划并设计了线段间速度的递推处理方法,插补点仅需根据当前速度及线段方向向量即可求出。通过对系统输出的插补点数据分析以及数控系统实际运行测试表明:该算法的加减速控制连续平滑,小线段加工程序具有较高的运行速度。  相似文献   

19.
基于计算机数控系统中逐点比较法的基本思想,提出一种新的插补算法。对该算法原理进行了详尽研究,并由数学方法导出了直线插补递推公式,进而分析了插补速度及插补精度,最后通过实例验证了这一方法。它适用于在平面上对直线、圆弧及其它二次曲线的轨迹插补。  相似文献   

20.
目的 满足椭圆曲线加工高速、高精度要求.方法 深入研究目标跟踪法对椭圆曲线的精确插补,算法结合弓高误差约束,能随椭圆曲线曲率自适应调整进给速度.提出了一种新的三次样条曲线加减速控制方法,该方法使加加速度呈线性变化,极大地减小了加工过程对数控机床造成的冲击.最后采用MATLAB进行实例仿真和性能验证分析.结果 该方法在椭圆轨迹插补过程中,插补最大轮廓误差不大于一个脉冲当量(0.001 mm),切削进给速度基本保持恒定.结论 该算法运算速度快、误差小,实现了高速、高精度要求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号