首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
基于Airpak软件,选用室内零方程湍流模型对一夏季空调办公室内热环境进行了三维数值模拟,得到室内气流组织下的流场、温度场分布.采用PMV-PPD与空气龄指标对室内人员热舒适性及空气品质进行了评价,并通过测试室内温度、风速参数,验证了数值模拟结果的准确性.研究表明:对于分体式空调器房间,气流组织分布与空调器的安装位置、室内设备的摆设以及室内人员的分布有关,不同的气流组织将形成不同速度场和温度场.室内温度场分布在水平方向比较均匀,在垂直方向产生明显的温度分层;室内零方程湍流模型能准确快速模拟空调通风房间气流组织分布,PMV-PPD与空气龄指标能对人体热舒适及空气品质进行数值预测与评价,为房间空调器送风温度、速度参数的合理设定提供参考依据;热环境数值模拟对空调系统的气流组织设计、运行调节具有重要的指导意义.  相似文献   

2.
为了得到地板送风系统理想的送风参数,首先通过正交实验研究不同送风参数对地板送风系统房间温度分布、热舒适性和空气品质的影响,然后采用控制变量法进一步研究送风温度和速度对系统性能的影响,最终通过Energy Plus能耗模拟软件计算得到供冷工况下热分层良好、舒适性较好且能耗较低的理想送风参数.实验结果表明:当旋流风口到人体的距离为0.7 m,送风温度为18~20℃,送风速度在1.2~1.5 m/s时,室内热分层较好,能够满足人员热舒适性和空气品质的需求.对不同送风参数下运行特性与能耗影响的模拟计算表明:在理想送风参数范围内,当送风温度为18℃、送风速度为1.2 m/s时,地板送风系统不仅可以保持较好的热舒适性和良好的热分层,同时还具有较低的能耗.  相似文献   

3.
为有效改善具有移动热湿源的高温高湿廊道热环境,给工人提供舒适的工作环境。以邯郸市某铁渣转运廊道为依托,建立廊道空气与皮带表面热湿耦合传热物理模型,定性分析不同送风温度、送风风速、铁渣温度、皮带运行速度条件下廊道热环境的改善效果,定量探究其对廊道热环境的影响程度,并拟合各影响因素与廊道温度的相关经验关联式。结果表明:对廊道热环境影响程度由大到小依次为:送风温度、送风风速、铁渣温度、皮带运行速度。送风温度越低,送风风速越高,铁渣温度越低,皮带运行速度越小,越能有效改善廊道热环境。送风温度为22°C,送风风速为2m/s,铁渣温度为65°C,皮带速度为3.0m/s为廊道热环境改善的最优组合方式。文章研究成果将为类似廊道内选择合适的通风方式、设备调控及系统优化提供指导。  相似文献   

4.
针对某多热源工业厂房室内高温的问题,提出全面通风和局部送风两种优化方案,并运用计算流体力学方法对改造前后厂房的热环境进行模拟。研究结果表明,增加局部送风主要是改善人员活动区域的热环境。增强全面通风使室内的整体热环境得到改善,同改善效果更为明显,并且可以有效的节约能源。原厂房工作区平均温度为38.9 ℃;平均风速为0.43 m/s;允许暴露时间为53.2 min。增强全面通风后工作区平均温度为35.1 ℃,比改造前厂房降低3.8 ℃;平均风速为0.41 m/s;允许暴露时间为85.7 min,比改造前厂房增加32.5 min。增强全面通风为厂房提供热舒适的工作环境,研究结果将为工业厂房的通风系统设计及改造方案提供依据。  相似文献   

5.
为研究新型气流组织形式对高散热工业生产车间热环境的改善效果,以一个电池材料生产车间为例,比较了四种气流组织形式对工业建筑的通风降温特性,包括混合通风,置换通风以及两种新型气流组织形式:层式通风和碰撞射流通风。采用计算流体动力学(CFD)方法,在相同的送风条件下对车间气流进行了数值模拟。结果表明,车间现有的混合通风形成的工作区温度高达39.1 ℃,而层式通风、碰撞射流通风和置换通风分别将工作区温度降低至33.5 ℃、32.8 ℃和31.4 ℃。针对上述气流组织的降温特性,提出了一种水平热分层的热环境控制方法。结合该方法对送风速度和送风量进行了研究。研究发现,降低送风速度能够促进车间温度的水平分层,从而在不增加送风能耗的情况下降低工作区温度。此外,车间的送风量存在一个临界值,低于该值时增加送风量能显著降低工作区温度,但是高于该值时增加送风量的降温效果提升不明显。研究结果为工业建筑的通风设计提供了参考。  相似文献   

6.
为了探索一种能够取代暖体假人现场实验的有效途径,建立数值气候室,利用计算流体动力学(CFD)的数值模拟方法,在送风温度为20℃、速度为0.05m/s工况下,对数值假人体表自然对流边界空气层的温度、速度场分布及热传递属性参数进行模拟,然后在送风温度为20℃、速度分别为0.15和0.50m/s工况下,对室内混合对流的温度场和速度场以及热传递属性参数进行模拟.研究表明模拟结果具备很高的可靠性.  相似文献   

7.
采用Airpak软件对置换通风下的空调列车软卧包厢内热环境进行三维数值模拟,得到包厢内流场、温度场、PMV-PPD和空气龄分布.根据人体舒适性指标(PMV-PPD)和衡量空气品质的空气龄值,对包厢内气流组织和空气品质进行了预测和评价.研究表明:采用Airpak软件,并基于PMV-PPD和空气龄的热环境数值预测和评价,具有全面、系统、直观的优点,为优化空调列车舒适环境和列车空调系统设计提供参考.  相似文献   

8.
目的研究不同送风方式对空调房间内污染物的扩散影响,确定有利于消除污染物的送风方式,改善具有污染源的办公室的空气品质,为设计合理的空调系统提出建议.方法采用Airpak软件模拟了4种不同送回风方式、3种不同送风量和3种不同污染物散发量,通过模拟得到所选取不同位置的污染物的质量浓度,分析污染物质量浓度的分布特点,得出不同送风方式和不同污染物散发量下室内污染物质量浓度的分布情况.结果比较得出顶送侧回的送风方式比其他3种送风方式除污效果好,送风量的增加使污染物质量浓度明显降低,但是要控制在合适的风速范围内.减小污染物的排放量也使室内污染物的质量浓度明显降低.结论采用顶送侧回的送风方式,在一定风速范围内增加送风量即增加送风速度可降低室内污染物质量浓度.  相似文献   

9.
针对装配式建筑特殊结构形式对暖通空调(heating,ventilating and air conditioning,HVAC)系统新的挑战与机遇,结合置换通风优势以及装配式住宅建筑墙体空间结构特征,开展了装配式住宅侧墙通风系统集成研究.采用数值建模研究手段,基于计算流体力学(computational fluid dynamics,CFD)计算平台,在诠释系统架构与运行方式基础上,重点分析了该新型系统运行效果表征关键环节,即室内气流组织效果.选择了夏季室内三种不同送风模式以及传统射流送风方式进行对比分析,并以风速不均匀系数、空气扩散性能指标以及通风效率等作为系统性能评价指标.研究结果表明:在相同的制冷量限定条件下,大面积侧墙下送上回和中送风工况的风速不均匀系数、空气扩散性能指标、通风效率分别为0.432、0.963、1.279和0.386、0.926、1.574,优于传统射流送风方式的0.552、0.483、1.081.尤其采用中送风模式下,室内工作区内温度较低,在满足室内设计温度的条件下具有节能潜力.该装配式住宅侧墙送风系统,不仅可提高室内热舒适性,而且能一定程度上降低建筑能耗,为装配式建筑与暖通系统的融合与一体化设计开拓了新思路.  相似文献   

10.
通风模式对室内环境品质及建筑运行能耗均有重要影响。文章在采用非稳定传热方法得到建筑围护结构热边界条件的基础上,对比研究了寒冷地区某办公室分别采用置换通风和层式通风的通风效果和节能特性。结果表明:在保证舒适性的前提下,研究对象采用置换通风的送风温度范围为13.0~27.0℃,采用层式通风的送风温度范围为19.0~24.0℃。采用实时调整送风温度的措施可以使置换通风中处理送风的机械制冷量日平均节约率达到2.87%,使层式通风中处理送风的机械制冷量日平均节约率达到5.16%,与基准送风温度对应的送风量相比,两种通风模式下的送风量均有所下降,其风量节约率可分别达到22.65%和32.14%。置换通风的室内温度更接近舒适,两种通风模式下室内污染物浓度均未超标。  相似文献   

11.
针对目前我国指导置换通风实际工程设计的具体规范标准相对缺乏、详细的工程设计参考数据不足这一问题,进行了理论与实验研究.建立了理论计算模型,利用所建模型对置换通风系统进行了数值模拟,通过实验验证了模拟结果的准确性,证明所建模型是正确的,可以作为后续分析的基础.确定了能够反映置换通风特点的几个参数指标,包括热力分层高度、通风效率、房间垂直温度梯度、工作区温度和工作区风速等.为了方便工程应用,定义了热源热指标的概念.根据热源热指标设计了研究工况,利用数值模拟方法重点研究了热源参数和送风参数对室内空气环境舒适性的影响,得出了热源参数和送风参数的设计取值范围,并对热源分散性的影响提出了设计参数的修正方法.所得结论可供置换通风系统设计及应用校核参考.  相似文献   

12.
地板送风室内温度不均匀分布特性的实验研究   总被引:1,自引:0,他引:1  
通过变化送风参数和室内热源,对6种典型工况的实验结果进行了分析,得到了地板送风室内温度分布的一些特性.针对地板送风室内温度分布的不均匀性,采用工作区垂直温差和0.1m高度处的空气温度与送风温度之差来表征工作区温度分布.实验结果表明:单位送风量的室内热源散热越大,不仅室内垂直温度梯度较大,而且工作区垂直温差增加的幅度比送回风温差增加的幅度更大,当室内冷负荷从324W逐渐增大到468W时,工作区垂直温差与其送回风温差之比从0.468增大到0.573;室内工作区垂直温度分布的形状与室内热源分布情况有关,当热源位于吊顶上时,工作区上下垂直温度梯度较大,中间垂直温度梯度较小;当送风温度提高5.7℃时;工作区垂直温差减小70%;工作区0.1m高度处的空气温度与送风温度之差约占送回风温差的50%.  相似文献   

13.
比较了混合通风、置换通风、地板送风和碰撞射流通风这4种送风方式的特点,利用试验方法实测了这4种方式下空调房间的室内温度、气流速度和CO2质量浓度分布,讨论了室内热环境特点的异同,对比分析了4种送风方式下室内热舒适性、污染物分布特征,并对送风能量利用情况做了估计.  相似文献   

14.
目的分析会议室内不同气流组织对人持续说话产生的飞沫气溶胶运动轨迹的影响,模拟飞沫气溶胶在会议室内的分布特征,确定最佳的气流组织方式.方法采用CFD数值模拟方法,选择RNG k-ε湍流模型计算空调房间的温度场和速度场,分析飞沫气溶胶颗粒的受力情况,采用拉格朗日法建立飞沫气溶胶颗粒运动的数学模型,模拟空调房间会议室内同侧上送上回、同侧上送下回、对侧上送下回3种混合通风和置换通风对飞沫气溶胶的运动轨迹.结果飞沫气溶胶运动轨迹显示飞沫气溶胶在置换通风停留时间和运动距离最短.3种混合通风气流组织相比,同侧上送上回的气流组织中飞沫气溶胶运动时间112 s和运动路程11.1 m最短,同侧上送下回次之,对侧上送下回最长.结论 3种混合通风中,同侧上送上回更容易避免飞沫气溶胶在室内传播,是最佳的混合通风气流组织方式.置换通风相比于混合通风更易减小人员之间受感染的可能性,是最佳的气流组织方式.  相似文献   

15.
为验证发生事故隧道纵向通风、非事故隧道正压送风的气流防烟模式的有效性,通过以类矩形地铁区间隧道为原型,建立了1:3的实体试验平台,对两种纵向通风模式的防烟效果、非事故隧道沿程温度及联络通道口温度变化对比分析。结果表明:事故隧道纵向通风、非事故隧道正压送风这种有效的气流防烟方法既可在无空间设置防火门的地铁区间隧道得以应用,也可以作为常规地铁区间隧道防火门损坏后降低火灾危害的应急手段。可见在有效的正压送风模式下,事故隧道纵向通风临界风速为1.6m/s,1#A联络通道口临界风速为1.7m/s,1#B联络通道口临界风速为1.8m/s,该参数可以为地铁区间隧道风机提供选型依据。  相似文献   

16.
脉动送风耦合层式通风,可以在保证良好能效和空气品质的前提下,进一步改善人体热舒适.建立和验证了脉动送风耦合层式通风的室内三维(CFD)模型,计算了26组工况.基于实验验证的动态热舒适评价指标,即时间平均预测平均投票(TAPMV)和时间平均吹风感(TAPD),分析了脉动送风参数(周期总时长、高速期与低速期时长之比、送风速度)对热舒适的影响.利用多目标优化TOPSIS方法可知,当周期总时长为300 s,高速期时长与低速期时长之比为1,高速期的送风速度为1.95 m/s,低速期的送风速度为1.05 m/s时,热舒适综合评价最优.  相似文献   

17.
侧墙上置风口置换通风规律实验研究   总被引:1,自引:0,他引:1  
针对侧墙上置风口置换通风方式,测试了房间非等温送风射流发展的速度场和室内空间的温度场,利用送风射流无因次速度变化曲线,分析了组合射流发展规律及其对通风效率的影响,基于送风速度与热源强度双因素,阐明了耦合作用对通风效率的影响,并指出了风口结构对通风效率的影响.  相似文献   

18.
城市轨道交通车厢的人员密度较高,车厢内的空气质量对乘坐体验及健康具有显著影响。以城市轨道交通列车车厢为例,采用CFD软件Fluent2019对正常载客情况下轨交车厢内空气质量进行数值模拟,分析空调送风风速为2、2.5、3 m/s和送风角度30°、45°、90°的温度场、速度场、污染物浓度场情况,提出在常态化防疫背景下,保证车厢最佳的空气流通率的通风方式为上送下回,送风速度为3 m/s、送风角度为垂直90°。  相似文献   

19.
个性化送风波动对热感觉和室内空气品质的影响   总被引:2,自引:0,他引:2  
为了解个性化通风环境下波动风对人体热舒适和室内空气品质的影响,在系统中实现传统的稳态送风和频率分别为0.1、0.2、0.3Hz的波动送风。采用受试者的主观感受和示踪气体测量两种方式,比较了这几种送风对改善室内热环境和空气品质的效果。实验表明:室温28℃时,个性化通风下人体最喜爱的送风波动频率为0.2Hz。该频率的波动风相对于稳态风有更强的冷却作用,并且该波动风不会降低吸入空气的品质。  相似文献   

20.
依据ISO 7730标准,采用IMP数据采集系统,对西安地区采用变频多联中央空调系统的某办公楼中的同一间办公室进行室内温度场连续测试.分析研究了变频空调室内机在不同送风速度和室内设定温度下对室内温度场分布的影响,采用温度不均匀系数对不同情况下气流组织进行了评价.实验结果表明,室内设定温度26℃,高风速时工作区域内垂直温度差较大,为1.3℃左右;低风速时工作区域内垂直温度差相对较小,为0.4℃左右.不同的设定温度,室内工作区域的温度都要比设定温度低1~2℃.当室内设定温度分别为26℃和28℃时,室内工作区域的温度都在24~26℃左右,满足夏季人体舒适性要求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号