首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
利用Monte Carlo模拟方法研究了三元自缩合乙烯基聚合反应中超支化高分子的二次回转半径在反应过程中的变化情况.在模拟中,重点考察了2类活性基团的反应活性、引发单体的数量分数、引发核的配比及其官能团数等对超支化高分子二次回转半径的影响.结果表明,这些因素对2类超支化高分子的尺度有着显著影响,因而可以通过调节相应的反应参数对超支化高分子的结构和平均尺度等相关特征予以调控.  相似文献   

2.
以ABb型缩聚反应体系为主从理论角度较为系统地对超支化高分子近年来的理论研究进行了总结,重点指出了统计力学、热力学、微分动力学方程、反应动力学和分子模拟等一些理论方法在相关研究中的应用.这些理论研究工作有助于更好地研究超支化高分子结构和性能的关系,为合成具有指定性能的超支化高分子提供了有意义的线索,从而可为全面研究超支化高分子的结构特征提供必要的支持.  相似文献   

3.
超支化聚碳硅烷具有耐高温、耐腐蚀、耐磨、良好流动性和溶解性,可望用于催化剂载体、陶瓷前驱体和发光材料等诸多领域.超支化聚碳硅烷合成方法有收敛法和发散法,其中收敛法通常仅用于合成较低代数的超支化聚碳硅烷.本文通过发散法,以廉价易得的甲基三氯硅烷与烯丙基溴格氏试剂反应,合成了超支化聚碳硅烷,并对所得产物进行了FT-IR、NMR、TGA和DSC等表征.  相似文献   

4.
超支化聚合物作为一类新兴的高分子材料,因其具有高度支化的"核壳"结构可作为"纳米反应器"制备形态规整、尺寸小、分布窄的纳米簇;利用表面大量的反应性基团,可以对碳纳米管等纳米材料实现表面改性。目前对超支化聚合物的研究已成为高分子领域的又一热点。  相似文献   

5.
端丙烯酸酯基超支化聚酯的合成及固化反应性能   总被引:7,自引:0,他引:7  
对超支化聚合物端基反应性能进行研究,可为其在热固性树脂中的应用提供指导。以丙烯酸为反应试剂,对端羟基脂肪型超支化聚酯进行端基改性,以高的收率及反应程度得到了端丙烯酸酯基超支化聚酯。研究了改性聚合物的紫外光固化反应性能。结果表明:由于空间位阻的影响,单独改性聚合物的端基反应程度很低;在其中加入活性稀释剂丙烯酸羟丙酯后,端基的反应能力得到很大改善。  相似文献   

6.
超支化环氧树脂改性环氧树脂共混材料的制备与性能研究   总被引:1,自引:0,他引:1  
以三羟甲基丙烷(TMP)和2,2一二羟甲基丙酸(DMPA)为反应单体,采用一步法合成了超支化聚合物.然后与环氧氯丙烷反应合成了低粘度液体型超支化环氧树脂,并与双酚A型环氧树脂共混,固化成型后得超支化环氧树脂改性环氧树脂共混材料.测试了共混材料的力学性能、热性能.探讨了超支化环氧树脂加入量对材料性能的影响.结果显示:共混材料的力学性能随超支化环氧树脂含量的增加先增加后下降,有最大值;当超支化环氧树脂用量为15wt%左右时,共混材料的冲击强度、拉伸强度、弯曲强度分别提高108%、83%、42%.玻璃化转变温度和热分解温度稍有下降.  相似文献   

7.
通过两步法反应合成了新型的AB2单体4-(6-溴-己氧基)-4′,4″-二羟基三苯甲烷,并进一步在温和的反应条件下得到端基为酚羟基的超支化聚醚型大分子,研究了反应时间、反应温度、单体浓度和核分子的加入对超支化分子的分子量及其分布的影响。除AB2单体法外,还利用A2+B3法合成了结构类似的超支化分子,并对比了两种不同合成方法对超支化分子的分子量及分子量分布的影响。通过A2+B3单体合成的超支化分子可作为添加剂来改性E-51环氧树脂,添加质量分数10%的该超支化分子就能极大地提高用酸酐固化的环氧树脂的耐碱性。  相似文献   

8.
超支化聚(胺-酯)的合成、表征及其改性研究   总被引:3,自引:0,他引:3  
以氯乙酸乙酯和二乙醇胺为原料,利用先低温后高温的"二步法"制得新型的超支化聚(胺-酯).元素分析、FTIR和MS分析结果表明,在低温反应阶段合成了预想的单体,高温聚合反应制备出超支化聚(胺-酯),合成反应过程中没有凝胶产生.进一步研究了聚(胺-酯)上端羟基与马来酸酐、丙烯酰氯的功能化反应,FTIR结果表明在超支化聚合物末端成功引入了双键.  相似文献   

9.
多羟基超支化聚(胺-酯)修饰多壁碳纳米管   总被引:1,自引:1,他引:0  
通过原位酯交换聚合反应,在多壁碳纳米管(MWNTs)表面接枝多羟基超支化聚胺-脂取得成功.分步产物的结构用FTIR进行了表征,TGA确定了修饰类型为共价接枝,SEM观察到MWNTs改性前后的形貌变化,并首次采用化学滴定方法确定了接枝在碳纳米管上的超支化聚合物的平均代数.接枝修饰后的MWNTs在水、乙酸乙酯等常见溶剂中的分散能力明显提高.  相似文献   

10.
以三羟甲基丙烷(TMP)和N,N-二羟乙基-3-胺基丙酸甲酯为单体,通过“准一步法”合成三代超支化聚胺-酯(HBP-OH),再与羟烷基硅油、异佛尔酮二异氰酸酯(IPDI)、二羟甲基丙酸(DMPA)和丙烯酸-β-羟乙酯(HEA)反应,合成了三代水溶性超支化光敏有机硅聚氨脂丙烯酸酯低聚物(WHBPSUA)。研究了反应温度、DMPA用量等因素对合成反应和产物性能的影响,确定了最佳反应条件,并通过IR、1H-NMR和GPC对超支化聚胺-酯及低聚物结构进行了表征。结果表明,三代超支化聚胺-酯(HBP-OH)最佳反应温度分别为120、130和135 ℃;DMPA和羟烷基硅油物质的量的比为1∶1时,所合成产物WHBPSUA具有良好的水溶性和成像性。  相似文献   

11.
井壁稳定是当前水基钻井液钻深层页岩气的技术难点。以二乙烯三胺和N,N-亚甲基双丙烯酰胺为原料,通过迈克尔加成反应合成了超支化聚合物HP-NH2。采用红外光谱法、液相色谱-质谱联用法、凝胶色谱法、粒度分析法和热失重分析法表征了HP-NH2的结构和特征。研究发现,HP-NH2的数均分子量为3 371 g/mol,多分散指数为2.7,分子量分布较宽,粒径280~1 900 nm,抗温能力达到280℃。通过线性膨胀实验、回收率实验、泥饼分散实验和“人造泥饼”法分析了HP-NH2作为防塌剂的防塌性能。研究表明,随着HP-NH2浓度的增加,膨润土的线性膨胀率逐渐降低(最低为19.11%),岩屑的滚动回收率逐渐升高(最高为75.18%),人造泥饼的渗透率逐渐下降。小分子HP NH2能够插入蒙脱石的晶层间,交换出层间易水化的阳离子,拉紧基底间距,抑制蒙脱石的水化分散;大分子HP-NH2能有效封堵泥饼的微纳米孔缝,起到一剂多用的功效。因此,HP-NH2可作为一种潜在的一剂多用防塌剂应用于水基钻井液体系。  相似文献   

12.
PVC/超支化聚(胺-酯)共混物的冲击与流变性能研究   总被引:3,自引:1,他引:3  
研究了超支化聚(胺-酯)的代数和用量对PVC/超支化聚(胺-酯)共混体系冲击性能和流变性能的影响,利用扫描电镜对共混体系的冲击断面形态结构进行分析.结果表明:超支化聚(胺-酯)的代数和用量均对共混体系的冲击强度有影响,当加入质量分数为5%的第3代超支化聚(胺-酯)时,共混体系的冲击强度达到42.5 kJ/m2,加入超支化聚(胺-酯)能有效降低共混体系的粘度,并且随着超支化聚(胺-酯)加入量的增多,共混体系流动行为逐渐向牛顿型流体转变,使得PVC的加工可以在较低的温度下进行,从而避免高温引起PVC降解.  相似文献   

13.
采用溶液缩聚合成了超支化聚酰胺,制备了超支化聚酰胺负载铂纳米簇杂化膜催化剂,对比新鲜和使用11次后的杂化膜催化剂,考察了催化剂在苯加氢反应中的活性寿命问题,并结合了透射电流(TEM)、X-射线衍射(XRD)、X-射线能谱(XPS)等手段对催化剂表征.结果表明:杂化膜型催化剂比传统粉末型催化剂寿命更长、活性更好;在杂化膜型催化剂中,使用超支化聚合物作为贵金属的载体,比线性聚合物作载体时苯的转化率高.起主要催化作用的可能是杂化膜表面的铂纳米颗粒.  相似文献   

14.
超支化聚酯的合成与表征   总被引:6,自引:0,他引:6  
以3,5二羟基甲苯和3,5二羟基苯甲酸为原料,采用“一锅煮”的方法合成超支化聚酯,通过不同的原料配比来控制超支化的向外的链扩展,每个分子形成大约2,4,8个酯结构的超化支臂,该超支化聚合物具有一定刚性的二维结构,不会产生分子链的缠结,而且显示出低粘度,低熔点和良好的溶解性等特点。  相似文献   

15.
采用“一步法”由二乙醇胺和顺丁烯二酸酐合成超支化不饱和聚合物,用核磁共振技术对聚合物结构进行表征.通过NMR谱图分析,发现聚合物结构中出现次甲基,以此为基础并结合相关文献报道,对聚合机理进行了分析.  相似文献   

16.
合成了以超支化聚缩水甘油为核、氟碳链为臂的超支化聚合物,并利用红外光谱、核磁共振、元素分析、凝胶渗透色谱、差热分析等手段对其进行了初步表征.作为核的超支化聚缩水甘油是以丙三醇为起始剂、缩水甘油为单体,在三氟化硼乙醚引发下阳离子开环聚合得到的.全氟辛酸酰氯由全氟辛酸与亚硫酰氯在DMF的催化下反应得到.利用聚缩水甘油的大量端羟基,将氟碳链接入聚缩水甘油中,得到了全氟端基超支化聚合物.这种全氟端基超支化聚合物其合成方法简单,结构独特:内核为亲水性,外臂疏水疏油,而且具有良好的成膜性能,有利于其在实际中的应用.  相似文献   

17.
超支化聚合物的合成及应用   总被引:6,自引:0,他引:6  
介绍了超支化聚合物合成方法及其应用前景,旨在加深人们对该领域的了解,从而加速该领域的发展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号