首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
双圆弧刚轮插齿刀几何参数的计算设计及齿形误差分析是谐波传动制造的难点之一.采用运动学法精确建立双圆弧刚轮插齿刀齿形及齿面数学模型;研究了双圆弧刚轮插齿刀顶刃后角对插齿刀可刃磨长度的影响规律;提出了侧刃后角、侧刃前角等几何参数的计算方法,研究了这些参数的影响因素及从齿顶到齿根的变化规律;分析了顶刃前角、顶刃后角对双圆弧刚轮插齿刀齿形误差的影响规律;通过算例给出了插齿刀前后角的设计方法.结果表明:插齿刀可刃磨长度随顶刃后角增大而减小;侧刃后角的大小与该点半径及压力角大小有关,并随顶刃后角增大而增大;侧刃前角随顶刃前角及顶刃后角增大而增大,其中顶刃前角的影响较大;顶刃前角与顶刃后角均对插齿刀齿形误差有较大影响,设计时应在保证齿形精度的情况下,选择较大的顶刃前角和较小的顶刃后角.  相似文献   

2.
研究加工不等齿厚的非标准参数渐开线齿形,与非渐开线齿形复合的锁闭齿轮插齿刀刀齿的排列、刀具齿数的选择以及刀具设计的基本方法,介绍用限制区域选择插齿刀变位系数的新方法,并给出刀具齿顶后角与侧螺旋角的关系曲线,为插齿刀参数的选择提供依据,结果表明,采用上述方法设计非标准复合齿轮插齿刀,可简化计算和提高设计效率。  相似文献   

3.
给出了一种新的直齿插齿刀渐开齿形造型方法,该方法可使插齿刀的齿形误差带减小,提高被加工齿轮的精度。  相似文献   

4.
针对强力刮齿加工的锥齿刀刀具刃形设计困难的问题,提出了一种用于加工渐开线齿形的锥齿刮齿刀刃形计算方法.根据交错轴空间啮合理论,建立内齿圆柱齿轮强力刮齿加工数学模型,推导并求解啮合方程式,得到刮齿刀齿面方程;对设计有前角的刮齿刀刃口廓形进行计算,得到锥齿刮齿刀的法面刃口曲线方程;以一种加工内直齿圆柱齿轮的锥齿刮齿刀为例,通过刮齿刀展成运动包络出的齿形和运动仿真分析,检查刀具规避干涉的能力,验证了该锥齿刮齿刀的计算方法准确可行.  相似文献   

5.
非零前角插齿刀,由于前后角的影响使得产形齿轮齿形不再是渐开线而产生齿形误差。这种误差影响了齿形精度,特别是负前角插齿刀,现行的设计方法不能满足齿形精度。本文用优化方法对插齿刀齿形角进行了修正,使修正后的插齿刀齿形误差,在最不利的情况下也不超过3μm,大大提高了插齿刀齿形精度。  相似文献   

6.
中等模数以下滚刀齿形的全齿面以及齿顶和齿底圆弧要求一次铲磨形成,铲磨砂轮截形需要精确计算.分析滚刀径向铲磨运动,以整体精确铲磨出滚刀设计齿形为目标,依据齿面啮合原理,建立滚刀铲磨砂轮廓形的数学模型.再由砂轮截面廓形及铲磨时砂轮与滚刀的啮合条件,建立滚刀实际铲背曲面模型,并给出滚刀重磨后齿形与理想齿形的偏差计算方法.对一种直槽零前角剃前滚刀、一种螺旋槽零前角圆弧滚刀进行铲背砂轮截形及滚刀重磨误差计算,结果表明该方法精确、有效.可用于计算滚刀径向铲磨砂轮数控修整的时砂轮截形和确定滚刀铲磨工艺参数.  相似文献   

7.
提出了用于外啮合齿轮珩齿加工的一种CBN径向珩齿刀,其基体的设计理论及其渐开线拟合是关键技术。通过应用空间啮合原理,推导出了斜齿珩齿刀与直齿齿轮的啮合方程,得到了这种珩齿刀的端面理论廓形,分析表明,此类刀具的端面理论廓形并不是渐开线;对其廓形进行了渐开线拟合,采用最优化方法计算了不同轴交角的渐开线参数,计算表明,把砂轮轴向廓形整修成具有一定压力角的直边,就可以磨出所拟合的全部渐开线刀齿面。加工珩齿刀基体时,根据修正后的压力角调整机床安装角,即可磨出符合要求的珩齿刀的基体。本研究为珩齿加工刀具提供了新的设计制造方法,对实际生产具有指导意义。  相似文献   

8.
为了提高插齿刀精度和寿命并实现拓扑修形齿轮的加工,提出锥面砂轮轴向冲程点接触刃磨插齿刀及拓扑修形斜齿轮齿面插齿修正方法.首先根据啮合原理和磨削过程中砂轮和刀具之间的运动关系,建立插齿刀切削刃方程;然后通过修正砂轮齿形角、轴向廓形及展成运动,使重磨深度内切削刃误差最小.此外为提高刃磨效率,通过等粗糙度磨齿法,确定砂轮每次冲程的齿面径向位置及冲程总次数.根据切削刃方程,建立2自由度插齿模型;结合插齿齿面误差和给定的目标法向修形面,推导工件的实际插齿目标拓扑修形面,建立基于插齿刀刃形修正参数(砂轮压力角、轴向廓形及展成运动)和插齿运动修正参数(工件转角及插齿中心距)的齿面误差敏感性分析修正模型.通过优化算法求解各参数,实现了拓扑修形齿面插齿修正.  相似文献   

9.
根据齿轮啮合原理,推导了双压力角非对称齿形面齿轮的齿面方程.在有限元软件ANSYS中建立了面齿轮副轮齿接触有限元分析模型.通过有限元接触压力计算结果与基于点接触Hertz理论接触压力计算结果的对比分析,确定了有限元模型的网格密度.由若干组算例的计算结果表明,适当增大工作侧齿面压力角可以明显降低面齿轮副接触压力和齿根弯曲应力,因此,非对称齿形设计可以获得更高的轮齿强度.  相似文献   

10.
齿形参数是影响齿轮承载能力的重要因素,针对车用变速器中的斜齿轮,考虑其特有参数——螺旋角并结合齿顶高系数,分析此类齿形参数对齿轮承载能力的影响具有十分重要的意义。以齿轮的弯曲和接触承载能力为研究目标,考虑不同的螺旋角及齿高系数,建立相应的参数模型,通过传统理论方法探究斜齿轮齿形参数对其承载能力的影响,并通过有限元分析对理论结果进行验证。研究表明:螺旋角与齿顶高系数的增大都会使齿轮接触强度提高,但是对于齿根弯曲强度来说,大齿顶高对它是不利的。  相似文献   

11.
本文主要推导了渐开线齿形外啮合斜齿齿轮泵的理论排量,困油容积的变化量和卸荷槽有关尺寸等的公式。可供分析和设计斜齿齿轮泵之用。所推导的公式同样也适用于渐开线齿形的直齿和人字齿齿轮泵。  相似文献   

12.
改变传统插齿刀变位系数的解法,利用建立起来的直齿外插齿刀变位系数计算机解法的数学公式,在计算机上用数值法实施了插齿刀变位系数计算机解泊。根据计算运行的结果,进行插齿刀变位系数图表法校验,获得了满意的结果,也大大提高了其计算精度和计算速度。  相似文献   

13.
本文以短幅外摆线的等距线为原始齿廓(外齿轮),求取了与之共轭的内齿轮齿形(准摆线齿形)及切削这种内齿轮的插齿刀齿形,并寻求了用三圆弧替代插齿刀齿形的方法。实例证明,该方法能获得足够的齿形精度,而给插齿刀的制造带来了方便。  相似文献   

14.
基于渐开线齿轮的插齿原理,以不同形式的齿廓曲线代替插刀齿廓曲线,包络出与给定齿廓曲线的插齿刀对应的被加工齿轮的齿形,以纯滚动弧长s为参数,利用坐标变换和齿廓共轭原理,根据插刀齿廓,推导出被加工齿轮的齿廓方程,并根据得出的齿廓方程进行了仿真.由仿真结果可以对具有不同齿廓的插齿刀所加工的齿轮进行可行性分析,避免实际加工所造成的浪费.  相似文献   

15.
为了探索节曲线内凹的高阶分段变性椭圆(斜)齿轮插削方法,基于外啮合非圆齿轮的运动特征和节曲线规律,建立高阶分段变性椭圆直齿轮展成插削加工数学模型和插齿刀数学模型;利用计算机技术对高阶分段变性椭圆节曲线凹凸性和凹凸部最小半径进行校验;构建直齿高阶分段变性椭圆齿轮齿坯等极角、齿坯等弧长和齿坯等转角插削方案,设计斜齿高阶分段变性椭圆轮的齿坯和插齿刀附加运动,利用Solidworks二次开发功能进行仿真加工。虚拟插削结果表明节曲线内凹的高阶分段变性椭圆(斜)齿轮能采用上述方法进行插削,相同插削效率下,等弧长插削出的高阶分段变性椭圆齿轮齿廓精度一致,其余插削方案各齿廓精度有差异;斜齿轮插削附加运动对齿向精度无影响。  相似文献   

16.
研究了刨齿机可调参数对直齿锥齿轮齿形加工精度的影响规律。通过分析齿形加工误差产生的原因,对滚切比、摇台摆角等调整参数进行了重新计算与比较,试切结果表明,齿形加工精度有明显提高,并达到使用要求。  相似文献   

17.
面齿轮轮齿刚度是面齿轮传动啮合刚度的基本组成,其计算方法的解决可为面齿轮啮合刚度以及后续动力学分析奠定必要的理论基础。基于Buckingham的观点,将面齿轮齿形看作是由沿齿长方向一系列变压力角的齿条组成,得到沿轴向和径向都为变截面的面齿轮简化齿形,获得了面齿轮轮齿啮合变形的计算公式,求解出了面齿轮轮齿刚度;并通过与有限元法进行对比分析,验证了面齿轮轮齿刚度计算方法的可行性;分析了面齿轮模数、压力角以及齿宽对其轮齿刚度的影响。结果表明:面齿轮模数越大,其轮齿刚度沿齿根到齿顶的变化率越小;面齿轮压力角越大,其轮齿刚度越大,但沿齿根到齿顶的变化率基本不变;面齿轮齿宽越大,其轮齿刚度越大,且沿齿根到齿顶的变化率较之压力角的影响大。  相似文献   

18.
本文应用解析原理,求出了车齿刀与齿轮的相互关系,论证了用直齿刀比用斜齿刀好,证明了西德J.Looman与日本小岛昌一在理论上认为“刀刃在渐开螺旋面上时,工件齿形有误差”是有缺陷的。  相似文献   

19.
本文建立了插齿刀齿形角修正后产生的造形误差的数学模型。在此基础上提出了一种修正插齿刀齿形角的新方法,此法可使插齿刀的造形误差大大减小,从而提高被加工齿轮的精度。  相似文献   

20.
直齿剐齿刀结构设计与计算   总被引:1,自引:0,他引:1  
针对剐齿发展的迫切需求,提出一种直齿剐齿刀结构及其参数计算的方法.首先简述了剐齿原理,进而提出直齿剐齿刀前、后刀面的结构形式.在明确刀具结构形式基础上,给出刀具参数及计算方法,并且推导出刀具的齿形误差.采用上述方法设计制造刀具,利用自行设计制造的数控剐齿机床进行实际加工,经Gleason Metrology Systems检测,工件齿形精度达7级,表明上述刀具设计方法有效、可行.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号