首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Bringmann H  Hyman AA 《Nature》2005,436(7051):731-734
The position of the cytokinesis furrow in a cell determines the relative sizes of its two daughter cells as well as the distribution of their contents. In animal cells, the position of the cytokinesis furrow is specified by the position of the mitotic spindle. The cytokinesis furrow bisects the spindle midway between the microtubule asters, at the site of the microtubule-based midzone, producing two daughter cells. Experiments in some cell types have suggested that the midzone positions the furrow, but experiments in other cells have suggested that the asters position the furrow. One possibility is that different organisms and cell types use different mechanisms to position the cytokinesis furrow. An alternative possibility is that both asters and the midzone contribute to furrow positioning. Recent work in C. elegans has suggested that centrosome separation and the midzone are implicated in cytokinesis. Here we examine the relative contributions of different parts of the mitotic spindle to positioning of the cytokinesis furrow in the C. elegans zygote. By spatially separating the spindle midzone from one of the asters using an ultraviolet laser, we show that the cytokinesis furrow is first positioned by a signal determined by microtubule asters, and then by a second signal that is derived from the spindle midzone. Thus, the position of the cytokinesis furrow is specified by two consecutive furrowing activities.  相似文献   

2.
用松胞素 B( Cytochalasin B, C B)处理培养的 Hela 细胞,抑制胞质分裂,引起 Hela 细胞发生不正常分裂,可形成多极细胞(三极、四极等).通过荧光免疫染色法显示多极细胞有丝分裂中期的微管,使用激光共聚焦显微系统观察三极细胞纺锤体和中期染色体的空间相对关系,推测了纺锤体微管的分布与有丝分裂后期染色体分离的相关性.本方法还可用于研究有丝分裂期纺锤体微管对胞质分裂分裂沟形成的影响.  相似文献   

3.
Y Gachet  S Tournier  J B Millar  J S Hyams 《Nature》2001,412(6844):352-355
The accurate segregation of chromosomes at mitosis depends on a correctly assembled bipolar spindle that exerts balanced forces on each sister chromatid. The integrity of mitotic chromosome segregation is ensured by the spindle assembly checkpoint (SAC) that delays mitosis in response to defective spindle organisation or failure of chromosome attachment. Here we describe a distinct mitotic checkpoint in the fission yeast, Schizosaccharomyces pombe, that monitors the integrity of the actin cytoskeleton and delays sister chromatid separation, spindle elongation and cytokinesis until spindle poles have been properly oriented. This mitotic delay is imposed by a stress-activated mitogen-activated protein (MAP) kinase pathway but is independent of the anaphase-promoting complex (APC).  相似文献   

4.
细胞周期,即细胞生长与分裂的周期,是生命得以世代繁衍而生生不息的基础.真核细胞有丝分裂周期进程调控的分子机制高度保守.其间,微管和微丝骨架进行有规律的动态变化,顺次组成各种细胞生长和分裂装置,主动参与细胞周期进程的调节.然而,高等植物细胞周期不同时相分别有着与动物细胞不完全相同的、独特的细胞骨架列阵.而这些列阵的产生和维持直接依赖于众多细胞骨架结合蛋白以及上游信号分子的调控.本文重点综述了植物细胞周期进程中微管和微丝骨架的动态变化规律以及参与植物细胞骨架动态和有丝分裂装置组装调控的细胞骨架结合蛋白的最新研究进展,同时对细胞骨架在植物细胞周期进程中研究进行总结和展望.  相似文献   

5.
Proper positioning of the cell division plane during mitosis is essential for determining the size and position of the two daughter cells--a critical step during development and cell differentiation. A bipolar microtubule array has been proposed to be a minimum requirement for furrow positioning in mammalian cells, with furrows forming at the site of microtubule plus-end overlap between the spindle poles. Observations in other species have suggested, however, that this may not be true. Here we show, by inducing mammalian tissue cells with monopolar spindles to enter anaphase, that furrow formation in cultured mammalian cells does not require a bipolar spindle. Unexpectedly, cytokinesis occurs at high frequency in monopolar cells. Division always occurs at a cortical position distal to the chromosomes. Analysis of microtubules during cytokinesis in cells with monopolar and bipolar spindles shows that a subpopulation of stable microtubules extends past chromosomes and binds to the cell cortex at the site of furrow formation. Our data are consistent with a model in which chromosomes supply microtubules with factors that promote microtubule stability and furrowing.  相似文献   

6.
Grill SW  Gönczy P  Stelzer EH  Hyman AA 《Nature》2001,409(6820):630-633
Cell divisions that create daughter cells of different sizes are crucial for the generation of cell diversity during animal development. In such asymmetric divisions, the mitotic spindle must be asymmetrically positioned at the end of anaphase. The mechanisms by which cell polarity translates to asymmetric spindle positioning remain unclear. Here we examine the nature of the forces governing asymmetric spindle positioning in the single-cell-stage Caenorhabditis elegans embryo. To reveal the forces that act on each spindle pole, we removed the central spindle in living embryos either physically with an ultraviolet laser microbeam, or genetically by RNA-mediated interference of a kinesin. We show that pulling forces external to the spindle act on the two spindle poles. A stronger net force acts on the posterior pole, thereby explaining the overall posterior displacement seen in wild-type embryos. We also show that the net force acting on each spindle pole is under control of the par genes that are required for cell polarity along the anterior-posterior embryonic axis. Finally, we discuss simple mathematical models that describe the main features of spindle pole behaviour. Our work suggests a mechanism for generating asymmetry in spindle positioning by varying the net pulling force that acts on each spindle pole, thus allowing for the generation of daughter cells with different sizes.  相似文献   

7.
Mishima M  Pavicic V  Grüneberg U  Nigg EA  Glotzer M 《Nature》2004,430(7002):908-913
The bipolar mitotic spindle is responsible for segregating sister chromatids at anaphase. Microtubule motor proteins generate spindle bipolarity and enable the spindle to perform mechanical work. A major change in spindle architecture occurs at anaphase onset when central spindle assembly begins. This structure regulates the initiation of cytokinesis and is essential for its completion. Central spindle assembly requires the centralspindlin complex composed of the Caenorhabditis elegans ZEN-4 (mammalian orthologue MKLP1) kinesin-like protein and the Rho family GAP CYK-4 (MgcRacGAP). Here we describe a regulatory mechanism that controls the timing of central spindle assembly. The mitotic kinase Cdk1/cyclin B phosphorylates the motor domain of ZEN-4 on a conserved site within a basic amino-terminal extension characteristic of the MKLP1 subfamily. Phosphorylation by Cdk1 diminishes the motor activity of ZEN-4 by reducing its affinity for microtubules. Preventing Cdk1 phosphorylation of ZEN-4/MKLP1 causes enhanced metaphase spindle localization and defects in chromosome segregation. Thus, phosphoregulation of the motor domain of MKLP1 kinesin ensures that central spindle assembly occurs at the appropriate time in the cell cycle and maintains genomic stability.  相似文献   

8.
Sedzinski J  Biro M  Oswald A  Tinevez JY  Salbreux G  Paluch E 《Nature》2011,476(7361):462-466
Cytokinesis, the physical separation of daughter cells at the end of mitosis, requires precise regulation of the mechanical properties of the cell periphery. Although studies of cytokinetic mechanics mostly focus on the equatorial constriction ring, a contractile actomyosin cortex is also present at the poles of dividing cells. Whether polar forces influence cytokinetic cell shape and furrow positioning remains an open question. Here we demonstrate that the polar cortex makes cytokinesis inherently unstable. We show that limited asymmetric polar contractions occur during cytokinesis, and that perturbing the polar cortex leads to cell shape oscillations, resulting in furrow displacement and aneuploidy. A theoretical model based on a competition between cortex turnover and contraction dynamics accurately accounts for the oscillations. We further propose that membrane blebs, which commonly form at the poles of dividing cells and whose role in cytokinesis has long been enigmatic, stabilize cell shape by acting as valves releasing cortical contractility. Our findings reveal an inherent instability in the shape of the dividing cell and unveil a novel, spindle-independent mechanism ensuring the stability of cleavage furrow positioning.  相似文献   

9.
介绍了高速木工机械电主轴的特点,分析了高速木工机械电主轴单元的热变形机理.建立了某型高速木工机械电主轴热态特性有限元分析模型,利用ANSYS进行了稳态温度场分析,并利用分布加载瞬态热分析模拟了机床的实际工作情况,得到了电主轴的温度场分布情况,为有效控制电主轴的温升提供了理论依据.在分析结果的基础上,提出了改善电主轴热态特性的措施,为电主轴冷却结构设计提供了参考.  相似文献   

10.
Molecular motors     
Schliwa M  Woehlke G 《Nature》2003,422(6933):759-765
Life implies movement. Most forms of movement in the living world are powered by tiny protein machines known as molecular motors. Among the best known are motors that use sophisticated intramolecular amplification mechanisms to take nanometre steps along protein tracks in the cytoplasm. These motors transport a wide variety of cargo, power cell locomotion, drive cell division and, when combined in large ensembles, allow organisms to move. Motor defects can lead to severe diseases or may even be lethal. Basic principles of motor design and mechanism have now been derived, and an understanding of their complex cellular roles is emerging.  相似文献   

11.
Colorectal cancer results from mutations in components of the Wnt pathway that regulate beta-catenin levels. Dishevelled (Dvl or Dsh) signals downstream of Wnt receptors and stabilizes beta-catenin during cell proliferation and embryonic axis formation. Moreover, Dvl contributes to cytoskeletal reorganization during gastrulation and mitotic spindle orientation during asymmetric cell division. Dvl belongs to a family of eukaryotic signalling proteins that contain a conserved 85-residue module of unknown structure and biological function called the DIX domain. Here we show that the DIX domain mediates targeting to actin stress fibres and cytoplasmic vesicles in vivo. Neighbouring interaction sites for actin and phospholipid are identified between two helices by nuclear magnetic resonance spectroscopy (NMR). Mutation of the actin-binding motif abolishes the cytoskeletal localization of Dvl, but enhances Wnt/beta-catenin signalling and axis induction in Xenopus. By contrast, mutation of the phospholipid interaction site disrupts vesicular association of Dvl, Dvl phosphorylation, and Wnt/beta-catenin pathway activation. We propose that partitioning of Dvl into cytoskeletal and vesicular pools by the DIX domain represents a point of divergence in Wnt signalling.  相似文献   

12.
Shi Q  King RW 《Nature》2005,437(7061):1038-1042
Although mutations in cell cycle regulators or spindle proteins can perturb chromosome segregation, the causes and consequences of spontaneous mitotic chromosome nondisjunction in human cells are not well understood. It has been assumed that nondisjunction of a chromosome during mitosis will yield two aneuploid daughter cells. Here we show that chromosome nondisjunction is tightly coupled to regulation of cytokinesis in human cell lines, such that nondisjunction results in the formation of tetraploid rather than aneuploid cells. We observed that spontaneously arising binucleated cells exhibited chromosome mis-segregation rates up to 166-fold higher than the overall mitotic population. Long-term imaging experiments indicated that most binucleated cells arose through a bipolar mitosis followed by regression of the cleavage furrow hours later. Nondisjunction occurred with high frequency in cells that became binucleated by furrow regression, but not in cells that completed cytokinesis to form two mononucleated cells. Our findings indicate that nondisjunction does not directly yield aneuploid cells, but rather tetraploid cells that may subsequently become aneuploid through further division. The coupling of spontaneous segregation errors to furrow regression provides a potential explanation for the prevalence of hyperdiploid chromosome number and centrosome amplification observed in many cancers.  相似文献   

13.
J P Lees-Miller  D M Helfman  T A Schroer 《Nature》1992,359(6392):244-246
Actin is a cytoskeletal protein which is highly conserved across eukaryotic phyla. Actin filaments, in association with a family of myosin motor proteins, are required for cellular motile processes as diverse as vesicle transport, cell locomotion and cytokinesis. Many organisms have several closely related actin isoforms. In addition to conventional actins, yeasts contain actin-related proteins that are essential for viability. We show here that vertebrates also contain an actin-related protein (actin-RPV). Actin-RPV is a major component of the dynactin complex, an activator of dynein-driven vesicle movement, indicating that unlike conventional actins which work in conjunction with myosin motors, actin-RPV may be involved in cytoplasmic movements via a microtubule-based system.  相似文献   

14.
本文应用最小应变能原理对机床三支承主轴进行刚度分析计算,并对机床三支承主轴和两支承主轴相对刚度分析比较,论证三支承主轴系统结构是提高机床刚度的有效途径。  相似文献   

15.
Proper partitioning of the contents of a cell between two daughters requires integration of spatial and temporal cues. The anaphase array of microtubules that self-organize at the spindle midzone contributes to positioning the cell-division plane midway between the segregating chromosomes. How this signalling occurs over length scales of micrometres, from the midzone to the cell cortex, is not known. Here we examine the anaphase dynamics of protein phosphorylation by aurora B kinase, a key mitotic regulator, using fluorescence resonance energy transfer (FRET)-based sensors in living HeLa cells and immunofluorescence of native aurora B substrates. Quantitative analysis of phosphorylation dynamics, using chromosome- and centromere-targeted sensors, reveals that changes are due primarily to position along the division axis rather than time. These dynamics result in the formation of a spatial phosphorylation gradient early in anaphase that is centred at the spindle midzone. This gradient depends on aurora B targeting to a subpopulation of microtubules that activate it. Aurora kinase activity organizes the targeted microtubules to generate a structure-based feedback loop. We propose that feedback between aurora B kinase activation and midzone microtubules generates a gradient of post-translational marks that provides spatial information for events in anaphase and cytokinesis.  相似文献   

16.
E Schwob  R P Martin 《Nature》1992,355(6356):179-182
Actin, a major cytoskeletal component of all eukaryotic cells, is one of the most highly conserved proteins. It is involved in various cellular processes such as motility, cytoplasmic streaming, chromosome segregation and cytokinesis. The actin from the yeast Saccharomyces cerevisiae, encoded by the essential ACT1 gene, is 89% identical to mouse cytoplasmic actin and is involved in the organization and polarized growth of the cell surface. We report here the characterization of ACT2, a previously undescribed yeast split gene encoding a putative protein (391 amino acids, relative molecular mass (Mr) 44,073) that is 47% identical to yeast actin. The requirement of the ACT2 gene for vegetative growth of yeast cells and the existence of related genes in other eukaryotes indicate an important and conserved role for these actin-like proteins. Superimposition of the Act2 polypeptide onto the three-dimensional structure of known actins reveals that most of the divergence occurred in loops involved in actin polymerization, DNase I and myosin binding, leaving the core domain mainly unaffected. To our knowledge, the Act2 protein from S. cerevisiae is the first highly divergent actin molecule described. Structural and physiological data suggest that the Act2 protein might have an important role in cytoskeletal reorganization during the cell cycle.  相似文献   

17.
通过木工钻床主轴转数及木工钻床三角皮带压轴力等对钻床空载功率影响的实验研究,分析出了钻床空载功率的理论计算依据,为木工机床设计提供了参考。  相似文献   

18.
花药药壁发育为基本型.成熟绒毡层细胞具双核,属分泌型,小孢子母细胞减数分裂为同时型,小孢子四分体排列为四面体形,单核小孢子第一次有丝分裂时,纺锤体始终与小孢子细胞长轴平行.生殖核先于营养核形成,胞质分裂极不对称,营养细胞与生殖细胞间具明显的、非肼胝质性质的壁.散粉时花粉粒为2细胞,细胞内贮藏丰富淀粉粒.花药各部分组织中始终富合淀粉粒,在小孢子及雄配子体发育过程中,淀粉的消长显示一定的功能相关规律.小孢子母细胞在减数分裂前期时开始积累肼胝质壁;刚释放的小孢子肼胝质荧光弱,液泡期小孢子具较强的肼胝质荧光.  相似文献   

19.
为准确掌握理想工况下机床承受的最大载荷,依据静刚度计算原理建立了主轴组件的静刚度数学模型,采用LABVIEW开发了主轴静刚度检测系统。以CA6140型机床主轴为检测体,通过施加不同载荷获得了主轴组件的位移。结果表明:主轴组件在外载荷作用下发生弹性变形,载荷增加,主轴变形量也增大。外载荷达到5000N时,主轴组件的静刚度达到最小,主轴变形最大。当外载荷大于5000N时,主轴组件的静刚度不再增加,开始出现振荡。若继续增大载荷,主轴达到强度极限后会发生断裂。该检测方法直观、准确、可靠。  相似文献   

20.
高速大功率精密电主轴中的关键技术   总被引:7,自引:0,他引:7  
高速精密大功率电主轴是高速数控加工机床中的核心部件,其性能的高低直接影响到高速加工机床的整体发展水平。本文阐述了该技术的国内外发展现状,系统介绍了制约电主轴发展水平的几项关键技术,并对高速大功率电主轴的未来发展方向进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号