首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过模仿荷叶表面微观结构和表面化学成分的方法,以玻璃为基底在溶液中生长ZnO纳米棒并经表面低自由能化修饰,从而成功制备了ZnO纳米棒阵列超疏水表面.经接触角测量仪表征,该超疏水表面静态水接触角为156°,扫描电镜分析表明所制备的ZnO纳米棒均具有100 nm左右的直径,这种微纳米的复合结构是赋予材料表面超疏水性能的主要因素.最后采用Cassie模型对该超疏水表面的超疏水性能进行了理论分析.  相似文献   

2.
锌基底上含金属锡的超疏水表面的制备   总被引:1,自引:0,他引:1  
针对超疏水金属表面广阔的应用前景,采用氯化亚锡的丙酮溶液,十八硫醇的丙酮溶液为疏水剂在锌基底上构建了超疏水表面,通过X-射线衍射(XRD)和扫描电镜(SEM)进行了结构表征和疏水性能测试.结果表明,超疏水表面具有微纳米阶层结构,静态接触角为158°,滚动角小于5°.  相似文献   

3.
为明确微滴与织物表面的碰触、铺展及渗透机理,基于最小势能原理,得到了纱线的中心线模型,通过研究纤维在纱线截面内的分布规律以及纤维体积分数的计算方法,建立了织物单胞的二维几何模型.在上述建立的织物模型基础上,依据流体体积(volume of fluid,VOF)两相流模型,建立了单颗微滴撞击织物表面后沉积变形的模型.利用所建立的模型,进行微滴与织物基底的碰撞及渗透过程仿真研究,并将模拟过程与试验进行对比.结果表明,所建模型可实现对微滴在织物基底的碰撞及渗透过程的模拟,整个过程与试验结果吻合较好.该研究方法与结果为后续不同工艺参数下微滴在织物表面沉积过程的研究奠定了基础.  相似文献   

4.
利用辉光放电电解等离子体技术对铜基底表面进行活化,再经硬脂酸修饰,得到铜基底超疏水性材料.考查了Na2SO4浓度、放电电压、放电时间、硬脂酸-甲醇溶液浓度、接枝时间以及接枝温度对超疏水表面性能的影响.用接触角仪、X射线衍射(XRD)、X射线光电子能谱(XPS)、红外光谱(FTIR)对铜表面的润湿性、表面元素组成及结构进行了表征和分析.结果表明,经修饰的铜基底表面具有良好的疏水性,接触角高达155.30°,滚动角小于5°,且稳定性良好.  相似文献   

5.
利用自组装方法将DNA分子吸附于Si基底表面, 并通过原子力显微镜(AFM)观察不同质量浓度的DNA溶液在Si基底表面进行自组装后的结构: 当DNA溶液的质量浓度较低时, Si基底表面会吸附单个、 拉伸、 环状的分子; 当DNA溶液的质量浓度为60~160 ng/μL时, 在Si基底表面会形成网状结构; 当DNA溶液的质量浓度超过200 ng/μL时, 仅形成DNA薄膜. 实验结果表明, 可以利用该方法制作基于Si材料的DNA分子器件.  相似文献   

6.
采用电化学氧化法,在泡沫铜多孔材料表面构建了纳米针结构.利用扫描电子显微、X射线衍射图谱分析及油水测试方法研究了电流密度对表面微观形貌、组成成分、润湿性和油水分离特性的影响.结果表明,增大电流密度可促进Cu(OH)2纳米针绒毛状微米团簇的生成,形成微纳复合结构,使超浸润性和油水分离特性明显提高.当电流密度为6 m A/cm2时,泡沫铜表面具有微纳复合结构.表面经改性后,水滴的静态接触角为161°,滚动角为7.2°,油滴则在表面完全润湿铺展,油水分离效率高达98%.同时,此改性表面显示出良好的抗水冲击性和耐水压性.  相似文献   

7.
采用水热合成法在铝基底上制备了微纳米结构ZnO薄膜表面试片,表面接触角小于3°,经FAS修饰后接触角达154.5°.通过结霜过程实验,表明两者均具有较好的抑霜效果,在测试条件下,与裸铝试片相比,水珠初始冻结时间分别延迟27 min及22 min;对于FAS修饰的微纳米结构ZnO薄膜表面,在30 min时其结霜量仅为裸铝试片的55%,反映低表面能的粗糙化结构表面对结霜起到很好的抑制效果.  相似文献   

8.
采用线弹性有限元法模拟分析了微孔洞相对材料表面深度的变化对应力集中及疲劳裂纹萌生的影响,研究结果表明:微孔洞直径尺寸大小仅影响相应的应力集中分布区域的大小,而微孔洞相对材料表面深度的位置决定了其最大应力集中系数的大小.当微孔洞处于材料表面下并与表面相切时,应力集中系数达到最大值,当微孔洞相对材料表面深度的位置偏离此位置时,应力集中系数急剧下降.研究结果合理解释了实验中观察到的疲劳裂纹在微孔洞处萌生现象,即疲劳裂纹优先在与样品表面相切上半部的微孔洞上萌生,尤其在样品表面下且与表面相切的微孔洞处.  相似文献   

9.
通过十二羟基硬脂酸的醇溶液浸泡,在铁、锌、铜锌合金的表面进行氧化还原自组装反应,形成了微纳米结构的粗糙表面超疏水结构,静态水接触角超过160°,讨论了可能的生成机理.利用X射线光电子能谱(XPS)、接触角测量、红外光谱(IR)、扫描电子显微镜(SEM)进行表征.结果表明,构筑的金属表面结构具有良好的超疏水性.  相似文献   

10.
研究用两亲性嵌段共聚物和纳米二氧化硅制备超疏水表面.采用可逆加成-断裂链转移聚合法(RAFT)合成了两亲性嵌段共聚物聚甲基丙烯酸叔丁酯-b-聚(4-乙烯基吡啶),用红外光谱,核磁共振,凝胶渗透色谱对聚合物进行了表征,将嵌段共聚物接枝到纳米二氧化硅上,形成一个有机无机杂化材料,通过调节pH值来控制杂化材料在水中的聚集行为,构筑了微纳双重结构的粗糙表面.该表面为超疏水表面,对水接触角达151°,滚动角5°.扫描电镜分析表面形貌表明:具有微纳双重结构的类似荷叶表面是形成超疏水的根本原因.  相似文献   

11.
【目的】为获得具有良好机械耐磨性的超疏水木材,构建了木材表面SiO2/环氧树脂/氟硅烷复合超疏水膜。【方法】采用两步法在木材表面构建有机/无机复合超疏水涂层,在木材基底预置透明环氧树脂底层以覆盖木材表面天然微沟槽结构,然后构建SiO2/环氧树脂/氟硅烷(FAS)复合超疏水薄膜。采用场发射扫描电子显微镜、原子力显微镜以及傅里叶红外光谱仪对超疏水涂层的微观形貌和化学组成进行表征,并测试其疏水、疏油和机械耐磨性能。【结果】木材表面复合超疏水涂层具有精细的微/纳米二元粗糙结构,该结构协同低表面能物质FAS,使木材表面不仅具有良好的超疏水性能(水静态接触角为153°,滚动角低于4°),而且疏油(乙二醇接触角为146°,滚动角低于11°); 经砂纸多次磨擦后木材表面水接触角和滚动角基本不变,超疏水性能保持稳定,超疏水涂层的微纳米结构及疏水物质依然保留,表现出良好的机械耐磨性。【结论】有机/无机复合超疏水涂层体系中,环氧树脂由于黏结作用使得SiO2纳米粒子与木材基底形成牢固的结合,从而赋予涂层良好的机械稳定性。  相似文献   

12.
采用模板法制备具有微纳米复合结构的聚苯乙烯接枝聚氧乙烯(PS-g-PEO)共聚物膜.将其与滴涂法制备的平滑膜进行比较,考察PEO含量、表面形貌对共聚物膜表面浸润性的影响.将制备的膜进行退火及水浸泡处理后测其接触角变化.结果表明:退火和水浸泡处理可使共聚物膜表面浸润性发生可逆改变,退火后共聚物膜表面接触角增大,水浸泡后接触角减小.其中退火后的PEO含量为40.9%的共聚物平滑膜进行水浸泡处理后,膜表面接触角由65.1°减小到53.3°,而对应的共聚物粗糙膜表面接触角由150.0°减小到60.9°,实现了超疏水到亲水的转变.不同处理条件下PEO链段聚集状态不同,退火及水浸泡处理使PEO链段发生翻转,导致膜表面浸润性发生可逆改变.  相似文献   

13.
将金属套管式微通道用于油包水(W/O)乳液的制备,系统考察了连续相中大豆油和正己烷的体积比、表面活性剂质量分数、套管环隙尺寸和微孔孔径等对乳滴粒径的影响。得到的较优制备工艺条件为:大豆油和正己烷体积比8∶10、表面活性剂Span 80的质量分数1%、微孔孔径5μm、套管环隙尺寸250μm,可制备出平均粒径约为13μm且分散性良好的W/O乳液。与高速均质机和Y型微通道的比较发现,其所得乳液分散性和稳定性优于后两者,可望满足实际工业应用需求的高通量(至少可达1L/min)。此外,实验考察了微通道结构参数对乳化压降的影响,结果表明乳化压降随微孔孔径、套管环隙尺寸的减小而增大。  相似文献   

14.
采用多种分析测试手段对石墨纤维表面的微观结构进行表征,并分析其表面微观结构对物理吸附性能的影响。研究表明:石墨纤维呈圆柱形,表面较光滑,结构较均匀,缺陷较少,单丝直径约为14~20 μm,纯度约为97.69 at%;石墨纤维具有类石墨结构,石墨微晶的层间距、晶粒尺寸和石墨化度分别为0.3402 nm、14.5 nm、44.19 %,拉曼光谱R值为1.2;石墨纤维含有较丰富的微孔结构,总比表面积、微孔比表面积、总孔体积、微孔体积、平均孔径和微孔孔径分别为537.02 m2/g、535.02 m2/g、0.2430 cm3/g、0.2368 cm3/g、1.8100 nm、1.1702 nm,是一种有工业前景的吸附材料;石墨纤维的物理吸附性能与其表面处理、晶体结构、表面结构和孔隙结构等有关,主要由微孔决定,是可以被用作于储氢的碳材料。  相似文献   

15.
为解决高湿度条件下超疏水表面防冰失效问题,提出了一种新型多孔超滑表面。基于自组装技术,提出新型超滑表面(HPO-SLIP)涂层表面制备方法,即通过构建超疏水粗糙多孔基底进而涂覆润滑油制备获得超滑表面,并对其润湿特性和微观形貌进行表征,最后对其防冰与疏冰特性进行实验研究。实验结果表明:与超疏水表面相比,超滑表面冷凝液滴孤立冻结,无"冰桥"扩展,结冰扩散速度慢;超滑表面与冷凝冻结液滴接触属于固-油-固接触模型,油膜动态迁移分布影响成核结冰;对于疏冰特性,超滑表面冰黏附剪切强度比亲水表面低一个数量级。综合分析发现,与亲水表面、超疏水纳米草表面、超疏水微纳复合表面相比,超滑表面具有最优的防冰传播特性与疏冰性能,可以有效减少冰积累量。  相似文献   

16.
以小分子炭氟表面活性剂[FSOCF3CF2CF2CF2CF2-(CH2CH2O)10](FSO)为超微孔模板剂, 通过酚醛预聚物和FSO间的氢键自组装作用实现其分子间的自组装, 经过水热处理和高温炭化合成超微孔炭材料, 并对其进行X射线衍射(XRD)测试、 氮气吸附测试和液相吸附性能测试. 结果表明: 该超微孔炭材料的孔结构有一定的规则性; 比表面积为600 m2/g, 且孔径分布在超微孔范围(1.2 nm); 对有机染料(罗丹明B)的最大吸附容量为120 mg/g.  相似文献   

17.
微乳液的性质与组成和结构密切相关,需要深入认识其聚集体的微观结构。对[bmim][PF_6]、[bmim][BF_4]、[bmim][Ac]这3种离子液体分别构建的Ls-36型超临界CO_2微乳液体系进行了分子动力学模拟研究,结果表明均可以形成稳定的微乳液,且微乳液结构类似。Ls-36尾链在CO_2中的伸展角度受离子液体阴离子结构的影响而有显著不同,[bmim][Ac]体系Ls-36尾链更靠近聚团外表面法线方向,相对于聚团外表面法线夹角范围为30°~70°,微乳液半径值也最大,为3.12 nm。[bmim][PF_6]体系Ls-36尾链相对于法线夹角范围为78°~125°,微乳液半径为2.88 nm。[bmim][BF_4]体系Ls-36尾链更贴近聚团一侧伸展,相对于法线夹角范围为107°~150°,微乳液半径值最小,为2.75 nm。相同表面活性剂浓度、含水量、温度及压力条件下,[bmim][Ac]体系聚乳速度最快、体系更稳定,同时对极性水分子的捕获能力最强,可达93.75%。  相似文献   

18.
用己二酸和乙二醇在一定的条件下通过酯化和缩聚两步反应合成聚己二酸乙二醇酯(PEA),测所得聚酯二元醇的酸酯(Av)和羟值(Qv),得到合成聚氨酯大分子单体的原料.聚己二酸乙二醇酯(PEA)与等量的甲苯-2,4-二异氰酸酯(TDI-100)反应,加入十三氟-1-辛醇封端,得到含氟聚氨酯大分子单体(FPUOH).利用分子自组装技术在玻璃基片表面制备含氟聚氨酯薄膜,对其进行结构表征和性能测试.亲水性测试结果表明,自组装薄膜与水的接触角为76.8°,证明了自组装薄膜制备的成功.微摩擦测试结果表明,含氟聚氨酯大分子自组装薄膜修饰的基底具有很好的减摩润滑效果,当载荷为400mN时,自组装薄膜的稳定摩擦系数达到0.09,适合作为轻载荷下的润滑防护保护膜.  相似文献   

19.
通过磷酸掺杂的方法增强PBI膜表面的亲水性,使PBI基底与性能优异的银纳米线良好结合。其水接触角由磷酸掺杂前的84°降低到掺杂后的28°,表明其亲水性有显著增强. 通过滴涂的方法在磷酸掺杂PBI膜表面滴涂银纳米线,制备了一系列以PBI为基底的柔性导电材料PA-PBI-Ag. 扫描电镜照片显示,银纳米线在PBI膜表面均匀分布,呈交联网络状,其导电性良好。方块电阻可低至1.2 Ω, 其耐弯曲性良好,弯折1 000次依旧保持良好的导电性. PA-PBI-Ag制备方法简便,性能优良,有良好的应用前景.   相似文献   

20.
为了研究余弦微槽结构的疏水性和冷凝传热性能,首先制备了不同槽峰高度和槽距的微米级余弦槽结构表面,实验研究了不同结构微槽表面的静态接触角及其对滴状冷凝传热性能的影响,并对冷凝传热过程中液滴在微槽表面合并、脱落过程进行实验研究和热力学分析。结果表明,液滴在微槽表面的疏水性和传热性能都呈现明显的各向异性,横向静态接触角θ⊥明显高于纵向接触角θ∥。同时,冷凝传热过程中竖直纵槽阻碍液滴的横向合并,但其对液滴脱落过程起到极大促进作用,传热性能较光滑表面提高30%~50%,且峰距比越大液滴的脱落半径越小、脱落频率越高,表面传热效率也越高。水平横槽则相反,虽然增大峰距比促进了液滴合并,但却对其脱落过程产生不利影响,导致整体传热性能较纵向槽表面大幅下降,与光滑表面接近。引入表面润湿率对微槽表面的液滴脱落半径进行热力学计算,计算值与实验结果吻合较好,误差在20%以内。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号