首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liu C  Li S  Liu T  Borjigin J  Lin JD 《Nature》2007,447(7143):477-481
  相似文献   

2.
3.
4.
The original experiment of Buller et al. and the many subsequent confirmatory reports clearly show that the time-to-peak tension and many other speed-related parameters of slow and fast muscle fibres are dictated by the motoneurone. It has been concluded that the motoneurone exerts this control of the physiological and associated biochemical properties by the frequency at which it excites the muscle fibre. However, no studies have been reported on the fatigue properties and the associated biochemical characteristics after cross-reinnervation. Based on the 'size principle' of motoneurones, it would be reasonable to assume that a muscle fibre reinnervated by a small motoneurone would be active often and that this would be manifested biochemically as an elevated oxidative capacity. Also, it has been shown repeatedly that the mitochondrial content of a muscle fibre can be modified by daily endurance type exercise. Thus, it would seem that the motoneurone at least indirectly also controls the mitochondrial content of a muscle fibre by controlling the degree of activity. We have now tested this hypothesis using self- and cross-reinnervated muscles in cats. We found that fast- and slow-twitch muscles retained their characteristic fatigue resistance properties regardless of whether the nerve to which they had become connected had originally innervated a fatigue-resistant or relatively fatiguable muscle.  相似文献   

5.
G K Dhoot  S V Perry 《Nature》1979,278(5706):714-718
Specific antibodies have been used to show that in adult skeletal muscle the slow and fast forms of the components of the troponin complex are located in type I and type II fibres respectively. alpha-Tropomyosin is restricted to type II cells. During development, as a result of changes in innervation and in certain diseased stages, both the slow and fast polymorphic forms of the troponin components are present in the same cell.  相似文献   

6.
H Lutz  H Weber  R Billeter  E Jenny 《Nature》1979,281(5727):142-144
There is good evidence for the coexistence of different myosin types both in developing muscles and in Purkinje cells from adult chicken hearts. In skeletal muscle fibres of adult animals, however, coexistence of fast (FM) and slow (SM) myosin has only been demonstrated after long-term electrical stimulation. The term 'promiscuity' has recently been coined to describe the coexistence of different myosin isoenzymes within a single fibre. Using novel, refined immunological methods we demonstrate here the presence of both FM and SM within single fibres of the musculus tibialis anterior of adult rabbits. Essentially identical results were also obtained with other muscles. Our findings imply that the genes coding for FM and SM can be expressed simultaneously within the same cell throughout an animal's entire life, and not only during development or after artificial electrical stimulation.  相似文献   

7.
PGC-1 α 与运动能力   总被引:3,自引:0,他引:3  
长期的耐力训练可诱导成年的骨骼肌发生一系列的生理性适应,其中包括快肌纤维向慢肌纤维转换,线粒体的生物合成等。过氧化物酶体增殖物受体γ共激活因子1α(PGC-1a)可能在运动诱导骨骼肌的适应机制起着重要作用:增强骨骼肌氧化代谢能力,从而增强利用脂肪和碳水化合物的能力。但研究发现PGC-1a基因敲除小鼠进行长期的训练仍能够诱导线粒体蛋白表达增加。长期耐力训练可诱导骨骼肌PGC-1a表达增加和激活确切生理作用仍需要进一步研究。  相似文献   

8.
9.
W J Thompson  L A Sutton  D A Riley 《Nature》1984,309(5970):709-711
Skeletal motor neurones innervate the specialized 'types' of fibres comprising most mammalian muscles in a characteristic fashion: each motor neurone forms a 'motor unit' by innervating a set of fibres all of the same type. Because the type expression of adult muscle fibres is plastic and apparently controlled by their innervation, each motor neurone is thought to impose a common type differentiation on all the fibres in its motor unit. However, the situation in developing muscles cannot be this simple. Muscle fibres in neonates receive synaptic input from several motor neurones and achieve the adult, single innervation only after a period of 'synapse elimination. Despite this polyneuronal innervation, differentiated fibre types are present in neonatal muscles. This means either that the motor neurones polyneuronally innervate fibres in a random fashion and type expression is not determined by innervation or that the polyneuronal innervation is ordered in such a way that each fibre could receive unambiguous instructions for type differentiation. We have investigated these possibilities here by determining the fibre type composition of motor units in neonatal rat soleus muscle. We find that even during the time of polyneuronal innervation each motor neurone confines its innervation to largely one of two fibre types present in the muscle. Therefore, some mechanism during early development segregates the synapses of two groups of soleus motor neurones onto two separate populations of soleus muscle fibres.  相似文献   

10.
Uncoupling protein-3 (UCP-3) is a recently identified member of the mitochondrial transporter superfamily that is expressed predominantly in skeletal muscle. However, its close relative UCP-1 is expressed exclusively in brown adipose tissue, a tissue whose main function is fat combustion and thermogenesis. Studies on the expression of UCP-3 in animals and humans in different physiological situations support a role for UCP-3 in energy balance and lipid metabolism. However, direct evidence for these roles is lacking. Here we describe the creation of transgenic mice that overexpress human UCP-3 in skeletal muscle. These mice are hyperphagic but weigh less than their wild-type littermates. Magnetic resonance imaging shows a striking reduction in adipose tissue mass. The mice also exhibit lower fasting plasma glucose and insulin levels and an increased glucose clearance rate. This provides evidence that skeletal muscle UCP-3 has the potential to influence metabolic rate and glucose homeostasis in the whole animal.  相似文献   

11.
12.
H Schmalbruch 《Nature》1979,281(5727):145-146
Fast twitch fibres of rat and rabbit show rectangular patterns of intramembrane particles in freeze-fracture preparations of the sarcolemma. These 'square arrays' are almost totally absent in the slow twitch coleus muscle of rat. I report here differences in the incidence of square arrays in human fetal and adult muscle and in different fibres within a human muscle. Square arrays probably classify fast and slow twitch fibres in freeze-fracture preparations of mixed muscles.  相似文献   

13.
G Salviati  E Biasia  M Aloisi 《Nature》1986,322(6080):637-639
Skeletal muscle fibres, long multinucleated cells, arise by fusion of mononucleated myoblasts to form a myotube that matures into the adult fibre. The two major types of mature fibre, fast and slow fibres, differ physiologically in their rate of isotonic shortening. At the molecular level these type-specific physiological properties are ascribed to different isoforms of myosin, a major protein involved in shortening. Differentiation of fast and slow fibres seems to be under the control of motoneurones, and mature fibres are innervated by only one motoneurone. When rat soleus muscle (SOL, a slow muscle) is dually innervated with a fast nerve, it acquires some properties of a fast muscle, that is, low sensitivity to caffeine and high glycogen content. We report here that in dually innervated soleus muscle the foreign fast nerve induces synthesis of fast isoforms of myosin, but only in the segment of the muscle fibre that is close to the foreign endplate. The localized influence of the nerve endplates suggest that factors controlling the phenotypic expression of the muscle fibre have a short range of activity.  相似文献   

14.
Why animals have different muscle fibre types   总被引:12,自引:0,他引:12  
Animals have different muscle fibre types: slow fibres with a low maximum velocity of shortening (Vmax) and fast fibres with a high Vmax. An advantage conferred by the use of different fibre types during locomotion has been proposed solely on the basis of their in vitro properties. Isolated muscle experiments show that force generation, mechanical power production and efficiency are all functions of V/Vmax, where V is the velocity of muscle shortening. But it is not known whether animals actually use the different fibres at shortening velocities that are optimal for mechanical power production and efficiency. Here we compare the V of muscle fibres during locomotion with their Vmax. This comparison shows that during slow locomotion, the slow fibres shorten at a velocity that gives peak mechanical power and efficiency and the fast fibres shorten at their optimal velocity when powering maximal movements. Our results also show that maximal movements are impossible without fast fibres because the slow ones cannot shorten rapidly enough.  相似文献   

15.
Purification of skeletal muscle dihydropyridine binding sites has enabled protein complexes to be isolated from which Ca2+ currents have been reconstituted. Complementary DNAs encoding the five subunits of the dihydropyridine receptor, alpha 1, beta, gamma, alpha 2 and delta, have been cloned and it is now recognized that alpha 2 and delta are derived from a common precursor. The alpha 1 subunit can itself produce Ca2+ currents, as was demonstrated using mouse L cells lacking alpha 2 delta, beta and gamma (our unpublished results). In L cells, stable expression of skeletal muscle alpha 1 alone was sufficient to generate voltage-sensitive, high-threshold L-type Ca2+ channel currents which were dihydropyridine-sensitive and blocked by Cd2+, but the activation kinetics were about 100 times slower than expected for skeletal muscle Ca2+ channel currents. This could have been due to the cell type in which alpha 1 was being expressed or to the lack of a regulatory component particularly one of the subunits that copurifies with alpha 1. We show here that coexpression of skeletal muscle beta with skeletal muscle alpha 1 generates cell lines expressing Ca2+ channel currents with normal activation kinetics as evidence for the participation of the dihydropyridine-receptor beta subunits in the generation of skeletal muscle Ca2+ channel currents.  相似文献   

16.
为了探讨外周动脉疾病运动受限的原因。从血流动力学的改变、气体交换率的下降、骨骼肌线粒体功能失调所致的生化改变、氧化压力以及骨骼肌类型的改变五个角度出发阐述了外周动脉疾病患者运动能力受限的具体改变机制,为今后的治疗方案对骨骼肌功能的改善提供依据。  相似文献   

17.
Striated muscles are present in bilaterian animals (for example, vertebrates, insects and annelids) and some non-bilaterian eumetazoans (that is, cnidarians and ctenophores). The considerable ultrastructural similarity of striated muscles between these animal groups is thought to reflect a common evolutionary origin. Here we show that a muscle protein core set, including a type II myosin heavy chain (MyHC) motor protein characteristic of striated muscles in vertebrates, was already present in unicellular organisms before the origin of multicellular animals. Furthermore, 'striated muscle' and 'non-muscle' myhc orthologues are expressed differentially in two sponges, compatible with a functional diversification before the origin of true muscles and the subsequent use of striated muscle MyHC in fast-contracting smooth and striated muscle. Cnidarians and ctenophores possess striated muscle myhc orthologues but lack crucial components of bilaterian striated muscles, such as genes that code for titin and the troponin complex, suggesting the convergent evolution of striated muscles. Consistently, jellyfish orthologues of a shared set of bilaterian Z-disc proteins are not associated with striated muscles, but are instead expressed elsewhere or ubiquitously. The independent evolution of eumetazoan striated muscles through the addition of new proteins to a pre-existing, ancestral contractile apparatus may serve as a model for the evolution of complex animal cell types.  相似文献   

18.
P F Baker  A Carruthers 《Nature》1980,286(5770):276-279
Insulin stimulates sugar transport in vertebrate skeletal muscle but the mechanism of insulin action is unknown. It has been reported that Na transport in giant muscle fibers of the barnacle (Balanus nubilis) is sensitive to insulin but no one has examined the sensitivity of sugar tansport to insulin in this preparation. We show here that insulin does, indeed, stimulate sugar transport in barnacle muscle. The great advantage of barnacle muscle over all other muscles used so far for investigating the mechanism of insulin action is its large size, which facilitates measurements on single cells and permits the experimenter to control the intracellular environment of the muscle fibre by the technique of internal dialysis. Using single muscle fibres it is possible to show that acceleration of sugar transport by insulin is associated with a fall in ionized Ca, a fall in cyclic AMP and a rise in cyclic GMP. Working with internally dialysed muscle fibres we find that insulin only increases sugar transport when the dialysis solution contains ATP. In the absence of insulin, sugar transport is dialysed muscle is increased by a rise in ionized Ca, a fall in cyclic AMP and, when the internal Ca is elevated, by a rise in cyclic GMP.  相似文献   

19.
20.
The dihydropyridine (DHP) receptor purified from skeletal muscle comprises five protein subunits (alpha 1, alpha 2, beta, gamma and delta) and produces Ca2+ currents that are blocked by DHPs. Cloning of the alpha 1- and alpha 2-subunits, the former affinity-labelled by DHP, has shown that the alpha 1-subunit is expressed in skeletal muscle alone, whereas the alpha 2- and delta- subunits are also expressed in other tissues. Although the transient expression of the alpha 1-subunit in myoblasts from dysgenic mice (but not in oocytes) has been demonstrated, the use of these expression systems to determine the function of the alpha 1- subunit is complicated by the presence of endogenous Ca2+ currents, which may reflect the constitutive expression of proteins similar to the alpha 2-, beta-, gamma- and/or delta-subunits. We therefore selected a cell line which has no Ca2+ currents or alpha 2- subunit, and probably no delta-subunit for stable transformation with complementary DNA of the alpha 1- subunit. The transformed cells express DHP-sensitive, voltage-gated Ca2+ channels, indicating that the minimum structure of these channels is at most an alpha 1 beta gamma complex and possibly an alpha 1- subunit alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号