首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
采用乙烯-四氟乙烯共聚物(ETFE)薄膜哑铃形试件,进行单轴拉伸试验,得到了工程中常用的ETFE薄膜的力学参数(屈服强度、屈服应变、切线模量和割线模量);在考虑ETFE薄膜粘弹塑性效应特征的前提下,应用应变能等效的方法计算ETFE薄膜等效弹性模量,结果表明计算得到的等效弹性模量介于切线模量和割线弹性模量之间.研制了一种专用于ETFE薄膜双轴拉伸试验的装置,并进行了系列试验;基于正交异性薄膜理论推导出薄膜双向解耦的独立弹性常数计算列式.根据ETFE薄膜双轴拉伸应力-应变曲线,求得厚度为250μm的ETFE薄膜在双边应力比为1:1的工况下的耦合模量为1163 MPa;由正交异性理论计算得该薄膜的解耦模量为814.2 MPa,与单轴拉伸试验得到的等效弹性模量相近.  相似文献   

2.
对厚度为250μm的乙烯-三氟氯乙烯共聚物(ECTFE)薄膜进行了单轴拉伸试验,考虑了不同的低-高温度(分别为-50、-40、-30、-20、-10、0、10、20、30、40、50、60、70及80℃)效应,试件截取方向为机器方向.得到了ECTFE薄膜在不同温度下的拉伸应力-应变曲线,通过分析得到了弹性模量、屈服强度、屈服应变、冷拉应力、抗拉强度、断裂延伸率等力学参数及其随温度的变化规律.结果表明:随着温度的降低,应力-应变曲线整体向上抬升,屈服强度、拉伸强度、冷拉应力和弹性模量均增大,断裂延伸率和韧性均减小.在不同温度(-50~80℃)下,弹性模量的差值可达到93%,屈服强度的差值可达到89%,温度变化对ECTFE薄膜力学性能的影响显著.得出了主要力学参数和温度变化的拟合公式,可用于判断ECTFE薄膜在不同温度下的力学性能.  相似文献   

3.
对150μm厚氟化乙丙烯(FEP)薄膜沿MD和TD方向裁取的试样进行4种拉伸速度的单轴拉伸试验,得到相应的屈服强度、抗拉强度和断裂伸长率,并给出以应变速率为变量的线性拟合公式;进行3种拉伸应力的循环拉伸试验,得到每循环割线模量及残余应变;进行3种应力水平下的徐变试验,分析徐变发展趋势.结果表明:FEP薄膜的屈服强度、抗拉强度和断裂伸长率都随着应变速率的增大而增大;随着循环次数的增加,循环割线模量及残余应变趋于稳定;拉伸应力9MPa时材料产生明显徐变.试验结果对FEP薄膜工程设计应用具有参考价值.  相似文献   

4.
对250μm厚乙烯-四氟乙烯(Ethylene-Tetra-Fluoro-Ethylene,ETFE)薄膜进行了单轴循环拉伸试验,通过试验得出ETFE薄膜的应力应变曲线,基于宏观现象和各向同性材料小应变假设,推导了适用于ETFE薄膜单轴循环拉伸第1次加载和卸载的本构方程,编写了采用两步法确定本构方程中参数的程序,利用程序模拟了ETFE薄膜在循环拉伸状态下第1次加载和卸载的应力应变关系.通过与试验得到的应力应变关系对比分析,验证了该本构方程和程序的正确性.提出的ETFE薄膜的本构方程可以较为准确地预测ETFE材料的应力应变关系,为ETFE薄膜结构的分析和计算提供参考.  相似文献   

5.
碳纤维单丝直径通常小于10μm,拉断载荷很小,其拉伸试验有别于常规材料.测定了T300-12K碳纤维单丝的拉伸性能,考察了拉伸速率对拉伸性能的影响.结果表明:随着拉伸速率提高,碳纤维单丝拉伸强度明显增大,拉伸强度由拉伸速率为0.1mm/min时的2 699MPa增加到10mm/min时的3 464MPa;表观弹性模量略有增大,大致呈线性规律增加,由拉伸速率为0.1mm/min时的186GPa增加到10mm/min时的209GPa;断裂伸长率随拉伸速率变化不大.  相似文献   

6.
为研究600 MPa级高强钢筋高温下的力学性能,对HTRB600级热处理高强钢筋进行高温下的拉伸试验,分别测得其在20,200,300,400,500,600,700及800℃高温下的弹性模量、比例极限、屈服强度、极限强度及应力-应变曲线.试验结果表明:HTRB600级高强钢筋高温下屈服强度、极限强度、比例极限与弹性模量均随着温度的升高而显著降低.500℃时其高温下的弹性模量、比例极限、屈服强度与极限强度降低为不足常温下的50%,800℃时已不足常温下的10%.高温下HTRB600级高强钢筋应力-应变曲线随温度的升高逐渐趋于圆滑,当温度达到200℃时,屈服台阶就已消失.600 MPa级钢筋高温下屈服强度和极限强度的降低程度明显大于其他钢筋500 MPa以下强度的钢筋.最后提出了适用于HTRB600级高强钢筋的高温下应力-应变曲线简化计算模型.  相似文献   

7.
为了研究 316 L 焊接热影响区性能 ,采用特定的热、应力、应变模拟控制曲线 ,对其在 2 0℃、6 0 0℃、10 0 0℃及 110 0℃几种温度下进行热模拟拉伸试验 ,获得了此种材料在多种应变速率下的应力 -应变曲线 .结果表明 ,在一定的应变速率下 ,316 L 的弹性模量 E及屈服极限 σ0 .2 都随温度升高明显降低 ;在室温及高温下 ,316 L 存在着 σ0 .2 随应变速率提高而提高的应变率效应 ,且应变率敏感性随温度升高而增加 .同时 ,还观察到 316 L在高温 (10 0 0℃和110 0℃ )塑性状态下由粘塑性引起的应力松弛现象及室温下的加工硬化现象 .  相似文献   

8.
冻融环境下混凝土双向受压强度与变形特性试验研究   总被引:11,自引:1,他引:10  
对普通混凝土经冻融后在双向压荷载作用下的变形和强度特性进行了试验研究.试件尺寸为100mm×100mm×100mm.试验过程中测得了混凝土在常态和经过25次、50次、75次冻融循环后在双向受压下的应力-应变关系曲线和双轴强度,分析了主压应力σ3及其对应的应变随冻融循环次数的变化规律,以及在冻融作用后混凝土的二轴强度、应力-应变关系,最大应力处的应力、应变和弹性模量随主压应力比的变化规律,观察了试件的破坏形态,建立了相应的破坏准则.发现普通混凝土经冻融后在双轴压荷载作用下的强度和弹性模量随着冻融循环次数的增加而降低,应变随着冻融循环次数的增加而增大;强度、应变和弹性模量随着主应力比α值的不同而变化的规律及其破坏形态均与常态混凝土基本相同.  相似文献   

9.
对全新飞艇蒙皮膜材Uretek3216L进行了单轴循环拉伸试验,采用自主研发的多功能薄膜双轴拉伸试验机进行5种应力比例下的拉伸试验.探讨了单双轴循环试验的应力应变关系及弹性模量随循环次数的变化规律,对双轴耦合弹性模量的理论公式进行了推导,分析了纬经向应力比对耦合弹性模量的影响规律.结果表明,单轴循环的第15次和第1次循环相比,经纬向弹性模量分别增大了20.7%和39.1%,其中第2次循环增大幅度最大,经纬向均占总增量的60%以上.对于双轴试验,随纬经向应力比R的增大,经向耦合弹性模量增大而纬向减小.确定了膜材的单、双轴应力下的弹性模量和3D应力应变响应曲面.  相似文献   

10.
为了更全面地分析冻土的强度与变形特性,以皖北某矿取样的原状黏土为研究对象,进行不同温度(-5℃、-10℃、-15℃)下的单轴抗压强度试验和三轴剪切强度试验.试验结果表明,在试验温度下,试样单轴抗压强度的应力-应变曲线为应变软化型;试验条件下,冻土三轴剪切应力-应变曲线可以用双曲线模型描述.随着温度的降低,冻土的单轴抗压强度和弹性模量均增加.初始弹性模量和极限偏应力均与围压呈正相关,与温度呈负相关.冻土的抗剪强度随围压增加而增大,随温度增加而减小.通过冻土三轴试验得到的抗剪强度指标推算单轴抗压强度,可以为人工冻结法施工提供理论依据.  相似文献   

11.
为研究土工格栅在不同拉伸速率条件下的力学特性及其作用机理,通过对2种土工格栅进行不同拉伸速率条件下的拉伸性能试验,分析土工格栅的拉伸速率与强度、伸长率、变异系数和拉伸模量的关系.试验结果表明:土工格栅随拉伸速率的增加其2%、5%伸长率下强度和峰值强度都趋向于幂函数曲线;伸长率受速率影响并不显著;土工格栅拉伸模量随着拉伸速率的增加逐渐增大,但是达到80mm/min以后出现下降趋势.  相似文献   

12.
试验材料为厚2 mm的6111铝合金,利用ZWIKE100KN高温材料试验机对该材料在350~550℃,0.1~10 s-1应变速率下进行热拉伸试验.结果表明:受位错密度的影响,6111铝合金的流变应力随温度的升高而降低,随应变速率的增大而增大;可以分为应变硬化和饱和稳态流变两个阶段.基于Voce饱和外推模型(H-S模型)构建以温度、应变、应变速率为变量因素的6111铝合金流变应力本构模型,通过回归拟合试验数据求解模型中的参数.试验数据与计算该模型得到的预测曲线吻合较好,验证了该模型的可行性.  相似文献   

13.
按照《金属材料低温拉伸试验方法》(GB/T13239—2006)的要求制作拉伸试件,对3种钢筋(热轧带肋钢筋HRB335、HRB400和热轧细晶粒钢筋HRBF400)共84根试件在-180℃~-80℃温度下的力学性能进行单轴受拉试验,研究低温下钢筋力学性能的变化规律.结果表明,随着温度的降低,钢筋的应力-应变曲线形状及极限应变基本不改变,但屈服平台长度、屈服强度、极限强度、强化应变增加.根据试验结果,给出了低温下钢筋屈服强度、极限强度、强化应变等力学特征值随温度的变化规律,进而可建立超低温下钢筋的应力-应变关系.  相似文献   

14.
用有限元法计算了钢和铝合金不同缺口根半径拉伸试样的应力、应变分布及其随外加载荷的变化规律.研究结果表明,缺口前端的最大正应力σyy/σy、三向应力度σm/σ和等效塑性应变εp都随外加载荷P/Pgy的增加而增大,但在整体屈服之前(P/Pgy<1)和整体屈服之后(P/Pgy>1)的变化规律不同.当外加载荷P/Pgy一定时,随缺口根半径的减小,缺口前的σyy/σy、σm/σ和εp均增大,但在较大缺口根半径(R≥2mm)和较小缺口根半径(R<2mm)时的应力、应变分布及其随P/Pgy的变化规律有所不同.材料拉伸力学性能对缺口前端的应力、应变分布总体上影响不大.  相似文献   

15.
为了研究316L焊接热影响区性能,采用特定的热、应力、应变模拟控制曲线,对其在20℃、600℃、1000℃及1100℃几种温度进行热模拟拉伸试验,获得了此种材料在多种应变速率下的应力-应变曲线。结果表明,在一定的应变速率下,316L的弹性模量E及屈服极限σ0.2都随温度升高明显降低;在室温及高温下,316L存在着σ0.2随应变速率提高而提高的应变率效应,且应变率敏感性随温度升高而增加。同时,还观察到316L在高温(1000℃的1100℃)塑性状态下由粘塑性引起的应力松驰现象及室温下的加工硬化现象。  相似文献   

16.
对12组250μm厚的乙烯-四氟乙烯(ETFE)薄膜在40~80℃时进行了不同温度和应力下的徐变试验.对试验数据进行对数拟合,分析了拟合参数随试验条件的变化规律,得出考虑加载应力和温度的函数关系式,用以描述ETFE薄膜在不同温度和应力下的徐变性能.该函数关系式对后续分析ETFE薄膜力学性能和长期荷载作用下的结构性能有重要作用.试验和分析结果表明,ETFE薄膜的徐变量随加载应力的增大和温度的升高而明显增大,且呈非线性关系;温度小于40℃且应力小于6MPa时,材料的徐变量较小且增加缓慢;40℃以上或较高应力状态下,徐变显著.  相似文献   

17.
本文在结合镁合金常用塑性加工工艺基础上,采用Gleeble一1500D热模拟机,在温度分别为573K、633K、693K,应变速率在0.05—10.8s^-1之间的条件下,对ME21镁合金进行高温快速拉伸试验。结果表明:合金的稳态流变应力随温度的升高而降低,随应变速率的增大而增大。同一应变速率下,峰值应力随温度的增高而出现得更晚。从应力应变曲线上也能反映合金在变形阶段产生了动态再结晶。在试验条件范围内合金的高温拉伸性能强度随变形温度的升高而减小,伸长率随变形温度的升高而增大。  相似文献   

18.
国产Q550高强钢高温力学性能试验研究   总被引:1,自引:1,他引:0  
通过稳态拉伸法对国产Q550高强钢高温力学性能进行试验研究,得到20~800℃下钢材的试验现象、力学性能参数、应力-应变关系曲线,并将所得试验结果与国内外相关规范和研究成果对比.试验表明:不同温度下试件破坏时表面及断口形貌区别明显;300℃后随着温度升高,弹性模量、屈服强度、极限强度下降,应力-应变关系曲线的弹性段和强化段缩短,下降段趋于平缓.450℃内高温对断后伸长率影响不大,此后随温度升高断后伸长率急剧增大.现有钢材高温力学性能参数模型对国产Q550高强钢并不适用.因此,分别采用多项式模型和美国国家标准与技术研究院的钢材高温通用材料模型进行拟合,得到高温下Q550高强钢力学性能参数的数学模型.  相似文献   

19.
利用高温高压养护釜、压力试验机等设备对油井水泥石的应力-应变曲线进行了检测.分析了温度、外加剂对水泥石强度和弹性模量的影响规律,研究了强度与弹性模量关系模型的建立问题.结果表明,单轴应力条件下水泥石具有明显的弹性变形及脆性破坏特征;强度与弹性模最初随养护温度提升而增大,达到一定温度后,随温度继续升高而减小;各体系的强度及弹性模量均随养护时间的增长而增加,分散剂、降失水剂、胶乳能降低强度和弹性模量,早强剂、膨胀剂能增加强度和弹性模量,硅砂能增加高温条件下水泥石的强度及弹性模量;采用数据回归分析方法建立水泥石强度与弹性模量之间的关系模型,可以依据所建立的模型利用水泥石强度测试数据估算弹性模量.  相似文献   

20.
SiCp-A356复合材料变温下的力学行为   总被引:3,自引:0,他引:3  
试验研究了SiCp-A356复合材料在变温条件下的力学行为.结果表明,SiCp-A356复合材料的屈服强度、拉伸强度和弹性模量随温度的升高明显下降.在20℃~150℃之间,表现为循环硬化,且硬化程度随温度升高而减弱;在200℃~300℃之间,表现为循环软化,且软化速率随温度升高不断增大.而松弛行为与一般金属材料通常具有的基本特征相似.在此基础上,建立了适用于制动盘结构分析的热弹塑性-蠕变本构模型,为进行制动盘应力应变场数值模拟和预测寿命提供了前提和基础.此外,还对SiCp-A356复合材料的微观断裂机制进行了分析.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号