首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
为研究大直径泥水盾构穿越复杂环境地表垂直变形规律,考虑盾构推力、盾体间隙及其填充、壁后间隙及其填充3个影响因素,提出了施工全过程地表垂直变形理论公式.结合武汉地铁盾构越江隧道工程,对大直径泥水盾构下穿棚户区施工全过程进行了三维数值模拟.公式计算结果与数值计算结果、监测值较为接近,吻合度高于Attewell修正的Peck公式.结果表明:(1)在分析大直径泥水盾构地表垂直变形时,需要充分考虑盾体间隙惰性填充材料的填充作用,可忽略盾壳与地层摩擦力的影响;(2)地表沉降沿隧道轴线变化曲线呈倒"S"形,开挖面后方26m(约两倍洞径)范围内土体变形速率极快,需及时加固;(3)同步注浆压力由0.3MPa提升至0.5MPa,可减小43.8%的最大沉降量,注浆压力适当提升对沉降控制作用十分明显.  相似文献   

2.
超大直径泥水平衡盾构地表沉降控制关键技术   总被引:1,自引:0,他引:1  
分析泥水平衡盾构施工引起地表沉降的机理,结合超大直径泥水平衡盾构施工实例,从切口压力、泥水指标控制及同步注浆管理等方面探讨超大直径泥水平衡盾构施工地表沉降的控制技术.结果表明:切口压力的设定对正面土体沉降量影响较大,在施工过程中应密切关注切口位置的地表沉降量并及时调整压力.对于超大直径泥水平衡盾构,单次压力调整不宜过大,切口压力波动不宜超过±2 kPa;采用双控同步注浆模式,以砂与粉煤灰为主要原材料的单液浆施工技术可以有效减小地表后期的沉降.  相似文献   

3.
马芸  段琼  桂超 《科学技术与工程》2020,20(21):8724-8731
为确定盾构隧道端头加固所需范围,以天津地铁6号线宜宾道站-鞍山西道站区间隧道工程为背景,基于大型通用有限元程序ABAQUS进行三维建模,土体采用Mohr-Coulomb本构模型,对破除封门及开挖状态下的盾构施工进行了参数化数值分析。结果表明:盾构破除封门状态下,纵向土体最佳的加固长度为9 m。考虑到地下水的影响,端头土体纵向加固长度宜为盾构主机长度加上1.5~2.0 m止水厚度,最后的纵向加固长度宜取12 m;盾构处于开挖状态下,纵向土体加固长度为12 m,盾构机尾即将离开加固区时,盾构机机头与机尾的最大竖向位移为15.5 mm,倾斜角度为0.1°,故此工况下盾构机不会产生"磕头"现象。采用盾构隧道端头加固参数可以确保该区间隧道工程开挖状态下施工安全,对软土地区类似工程具有重要的理论与工程意义。  相似文献   

4.
目的分析盾构掘进施工对桥桩的影响,评估盾构掘进对桩体位移、桩身轴力、弯矩等的影响程度.方法以石家庄轨道交通1号线下穿周汉河桥段为例,采用三维数值模拟的方法建立双线盾构穿越桥梁桩基础模型,对盾构掘进施工过程中所引起的桩基础的位移和内力进行分析,以数值分析为基础制定合理的监测方案,对盾构掘进穿越桥梁基础进行现场监测.结果盾构施工造成的桥桩应力变大,1号桩最大应力为0.86 MPa,2号桩最大应力为1.96 MPa远小于设计值22.4 MPa;左线盾构掘进完成后,地表的最大沉降为5 mm,右线盾构掘进完成后,地表最大沉降为10.2 mm;桥桩的最大水平位移为2.6 mm,其中2号桥桩的沉降最大,为9.35 mm;下穿周汉河桥桩段路面最大下陷值为6.9 mm,3处桥梁桩顶沉降分别为5.78 mm、5.51mm和5.43 mm,小于施工限值12 mm.结论数值模拟计算结果与现场实测数据的结果符合较好,说明模拟计算时所建立的数值模型与相关物理力学计算参数的确定是合理可靠的.  相似文献   

5.
为研究盾构穿越江堤并切削抗滑桩对江堤稳定性及周围土体变形的影响,并探究MJS工法在此类工程中的应用效果,以南京建宁西路大直径盾构切削江堤抗滑桩工程为背景,采用三维有限元数值模型,分析了在有无MJS工法加固两种情况下两台盾构机并行穿越江堤全过程中的江堤和抗滑桩变形规律.研究表明:盾构穿越江堤过程中,堤顶土体受扰动最严重;MJS加固能有效分担滑坡推力、控制土体与抗滑桩的变形.  相似文献   

6.
为研究泥水盾构双洞先后下穿施工影响下既有挡墙式路基的沉降控制措施,依托京沈客专望京双洞盾构隧道施工下穿北京机场线路基工程,通过分析现场监测数据及盾构施工参数,在阐明了路基的沉降规律基础上,总结了控制沉降的盾构施工参数调控和注浆加固、沉降补偿的经验.研究结果表明:掘进各参数间、泥浆各参数间的关联密切;合理且较高的顶推力和泥水压力、较高比重和黏度的浆液可确保在地层扰动小的情况下盾构快速通过穿越段;理论注浆量2.5倍的同步注浆量和大于泥水仓压力0.15~0.2 MPa的注浆压力可确保盾尾建筑空隙充填密实;地表预注浆充分改良加固了地层、适度抬升了路基,注浆压力1.2 MPa的地表跟踪注浆及时有效地抑制、补偿了路基沉降,注浆压力1.2 MPa和速度100 L/min的隧洞内加强注浆减小了路基工后沉降.  相似文献   

7.
以芜湖城南大直径过江隧道为依托,采用数值模拟法对超大直径泥水盾构隧道掘进过程中无为长江大堤沉降特征开展研究。首先,建立三维数值计算模型,并结合现场监测数据校正数值模型;其次,在考虑土体开挖、泥水支护、管片衬砌、壁后注浆以及地层损失等施工要素的基础上,对施工过程进行精细化模拟,分析压密注浆加固土体前后大堤的沉降;最后,对堤坝地表沉降结果进行分析,讨论总结规律。研究结果表明:压密注浆可有效地降低堤坝顶部沉降值;盾构双线同时掘进下穿堤坝时,大幅增加了堤坝顶部的沉降值;盾构穿越后的最大沉降值为20.46 mm,满足规范中沉降值要求。研究结果为芜湖城南大直径过江隧道掘进提供指导,对类似工程亦具有借鉴意义。  相似文献   

8.
盾构始发端头土体加固时,如何保证加固土体的稳定性是需要解决的关键问题.结合苏州地铁某车站西端头盾构始发工程(无含水层),运用通用有限元分析软件在封门拆除这种最不利的工况下对该工程始发掘进进行了模拟分析.由数值模拟知,当纵向加固长度为3 m时,沿盾构隧道掘进方向土体向工作井内移动,最大位移发生在暴露掌子面的中心处,达12.92 mm,封门上方地表土体变形最大,沉降约为3.0 mm,强加固区范围内土体受力均在设计强度范围之内,计算出安全系数分别为2.05、1.47和1.30;在无含水层的盾构始发端头,纵向加固长度为3 m时就可以在强度上满足要求,且安全系数有富余.  相似文献   

9.
以天津地铁3号线铁东路站~北站盾构区间隧道为背景,通过现场实测和数值模拟的方法,对盾构施工穿越既有铁路引起的地表沉降规律进行了研究。现场实测数据表明:沿隧道轴线方向不同位置的地表位移变化较大,对于双线隧道施工,后建隧道对先建隧道的土体扰动影响较大。结合现场监测数据及各项施工参数设置,采用ANSYS有限元分析软件对隧道下穿既有铁路的施工过程进行了数值模拟。在此基础上,通过模拟与实测数据的对比分析,总结了盾构隧道施工引起的既有铁路纵向和横向地表沉降规律,为类似工程的设计和施工提供参考依据。  相似文献   

10.
为揭示苏州地铁4号线区间隧道盾构近距离施工双洞之间的影响,采用数值计算和现场监测相结合的手段,获得后行洞施工条件下引起的先行洞附加应力及变形变化规律。研究结果表明:后行洞近距离施工会引起先行洞管片的二次附加应力,且在三维方向均有作用;其中径向附加应力主要呈受压状态,环向附加应力主要呈受拉状态,轴向附加应力由受压状态转化为受拉状态,且附加应力随着后行洞盾构的掘进逐渐增大并趋于稳定状态;由后行洞施工引起的径向附加应力最大约为0.028 MPa,环向附加应力最大约为0.270 MPa,轴向附加应力最大为0.700 MPa;管片及地层变形受土仓压力及注浆压力的影响明显,盾构连续施工过程中先行洞管片整体变形较大,最大变形约为6 mm;地层由隆起逐渐转为沉降,最大隆起量约为1.45 mm,随着盾构的远离,地表沉降逐渐增大,最大达14 mm左右;结合相关施工经验,后行洞施工对先行洞的影响处于可接受范围内,能保障隧道施工和结构受力稳定。  相似文献   

11.
西安地铁盾构下穿古城墙沉降分析及加固效果   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究双线盾构下穿过程诱发地表沉降的规律及上部古城墙的变形特征,依托地铁4号线区间隧道下穿和平门古城墙工程,通过数值模拟和现场测试手段对沉降及加固效果进行分析。结果表明:在袖阀管注浆加固及门洞钢拱架支护等作用下,城墙地基区域地表沉降值减小4mm,城墙结构沉降减小约2.2mm,避免了地基局部隆起过大和倾斜率超限;城墙地基区域加固工况下地表横向沉降曲线为宽而浅的单峰沉降槽,未加固工况下表现为窄而深的双峰沉降槽;左、右线隧道施工存在相互影响,且变形稳定后右线隧道地表沉降峰值大于左线。现场实测与数值计算的结果吻合良好,分析方法和研究结果可为日后黄土地区类似的盾构穿越工程提供有益的参考。  相似文献   

12.
以某市轨道交通5号线和平公园站至红钢城站区间隧道下穿武九铁路为依托工程,采用FLAC3D软件对盾构隧道下穿铁路施工引起的轨面沉降进行三维数值模拟分析,得到了既有铁路线轨面的沉降规律。研究结果表明,在盾构隧道施工过程中,武九铁路线轨面最大竖向位移为1.94mm,穿越隧道范围铁路线纵向沉降差最大值为0.62mm,武九铁路的变形值满足相关保护标准的要求,区间盾构隧道施工不会影响既有武九铁路的正常安全运营。  相似文献   

13.
针对南京地铁10号线过江隧道大直径泥水盾构接收端头为富水砂性土层这一不良地质条件,比选出最适宜的加固方式:水泥土三轴搅拌桩+高压旋喷桩+垂直冷冻固结。分析了大型泥水盾构水中接收的施工关键技术,采用工程应用与实测相结合的综合研究方法对垂直冻结施工及盾构接收期间地表沉降进行了现场实测研究,分析了垂直冻土墙的温度变化规律。接收端头地表沉降结果显示:盾构接收段加固区域内地表沉降≤4.6mm,地基加固处理效果较好。采用水中接收技术能够保障富水砂层大盾构的安全接收。  相似文献   

14.
新建地铁极近距离下穿既有运行地铁的设计和施工是其重点和难点,土质条件和地下水赋存等条件是其控制性因素.以南京地铁5号线三山街站-朝天宫站盾构区间隧道出三山街站下穿既有地铁1号线为研究背景,研究软流塑地层新建地铁下穿既有运行地铁的设计和施工要点.分别选取3种地层加固方案确保盾构机顺利穿越隧道:方案1(管棚+水泥土搅拌桩+袖阀管注浆联合加固)、方案2(微扰动注浆加固)、方案3[水平旋喷桩全方位高压喷射(metro jet system,MJS)加固)],通过对方案加固效果进行对比分析,最终选定方案1.随后在选定方案的基础上研究了土舱压力和注浆压力对既有隧道位移的影响.结果表明:土舱压力在0.19 MPa以内变动时对隧道控制效果最显著,在实际施工过程中,注浆压力不宜过大,以防水泥浆液劈裂土体造成土体破坏,应实时进行监测.  相似文献   

15.
盾构长距离下穿铁路股道引起的地表沉降分析   总被引:1,自引:0,他引:1  
以天津津滨轻轨天津站至七经路站的盾构施工区间工程为对象,对多条铁路轨道下,盾构长距离推进过程中引起的地表变形进行了三维有限元数值模拟,根据模拟结果分析了盾构施工导致沿盾构方向和垂直于盾构方向的地表沉降量,总结了盾构施工各阶段发生的地表沉降变化规律;研究了盾构掘进对地表的扰动范围;模拟和分析了不同工况下盾构施工引起的地表沉降差异.结果表明,数值计算的地表最大沉降量在18~20 mm,与其监测值较吻合,注浆量对地表沉降的影响比注浆压力和土舱压力显著.
  相似文献   

16.
张秀山  吴镇  王磊  王寒冰 《科学技术与工程》2021,21(29):12710-12717
以济南市轨道交通R1线王府庄站~大杨庄站区间盾构隧道下穿京台高速公路桥梁为工程依托,采用MIDAS-GTS有限元软件建立三维计算模型对比分析有无注浆两种工况下桥墩变形特征,计算结果表明:无注浆加固条件下,桥墩竖向沉降最大值达10.24mm,接近变形控制值10.0mm;采用袖阀管注浆加固条件下,桥墩竖向沉降最大值为6.35mm,加固效果对保护桥梁变形效果明显。施工过程中通过控制盾构掘进参数、同步注浆、补强注浆、渣土改良技术等施工精细化技术措施来减小盾构施工对桥梁扰动;针对桥梁沉降达到预警值、控制值分阶段采取洞内径向注浆、应急支顶措施,确保桥梁结构安全。监测结果显示,盾构整个穿越过程中,桥墩最大沉降值为3.11mm,表明袖阀管注浆加固对控制桥梁变形起到很好地效果。  相似文献   

17.
以山东某多孔圆形截面波纹钢桥涵为依托,对其土压力和应力进行了长期监测和分析,发现温度和基础沉降对波纹钢桥涵长期受力性能有着较大影响.通过有限元模型具体分析了温度和基础沉降的影响,并对实测数据进行了修正,得出了波纹钢桥涵在填土施工完成后应力和土压力的长期发展规律.结果表明:在施工结束后长期作用阶段,管涵所受土压力变化主要受土体沉降密实的影响,土体沉降密实总体有利于土体与结构相互作用的发挥,而温度对光纤光栅传感器长期测试数据影响较大,去除该影响后各测点应力有所增长,但增长缓慢,且在一段时间以后,甚至有减小趋势,这与土压力长期变化趋势相互印证,说明波纹钢板桥涵长期受力性能将逐渐趋向对结构有利方向发展;基础沉降对管涵应力有一定影响,随沉降值逐渐增加,管中趋于受压,水平土压力也逐渐增加;而管顶趋于受拉,竖向土压力也逐渐减小,说明波纹钢桥涵对于基础沉降有较好的适应性.  相似文献   

18.
地铁隧道盾构施工始发与到达段容易出现塌方、涌水(泥、砂)等工程事故,因此该区域地层的加固优化设计尤为关键.文中结合长株潭城际铁路树木岭盾构隧道始发段地层加固工程实际,首先采用弹性薄板理论计算不同安全系数下端头土体的纵向加固范围,并利用强度理论和滑移失稳理论对土体进行强度及稳定性验算;然后基于Terzaghi围岩压力理论确定浅埋盾构端头土体的横向加固范围,利用FLAC3D建模分析不同加固范围盾构施工对周边环境的影响,依据相关监测规程及设计文件要求,从经济性和稳定性角度确定优化后的端头土体加固范围,并应用到该工程中.优化后的数值模拟数据与实际监测结果吻合较好,说明优化后的设计方案是合理的.  相似文献   

19.
为了考察饱和黄土地层暗挖地铁隧道下穿玻璃幕墙建筑物时建筑物及玻璃幕墙的稳定性特征,利用有限元软件MIDAS GTS NX对西安某地铁隧道暗挖下穿玻璃幕墙建筑物进行数值模拟分析,并对比采取注浆加固与未采取注浆加固工况时有限元分析结果与现场实测数据。结果表明:周围土体的沉降主要集中在隧道附近,在地表形成沉降槽;玻璃幕墙的沉降主要在开挖过程中形成,约占总体沉降的95%;未采取注浆加固时地表及建筑物的最大沉降达到79.74 mm,而采取注浆加固后最大整体沉降为13.75 mm,通过全断面注浆和合理的施工工序可以使沉降有效减少82.76%;选取的测点实测平均沉降为13.57 mm,有限元分析中对应测点的平均沉降为10.94 mm,二者误差为2.63 mm,数值模拟与实际工况基本吻合。  相似文献   

20.
某地铁工程正线盾构隧道需下穿引出段线明挖区间隧道,针对上部隧道底部不加固、上部隧道底部加固及上部隧道底部不加固+盾构反向掘进三种不同工况,对盾构掘进中引起的周围土体变形及上部明挖区间隧道位移进行了详细分析。计算结果表明:上部隧道底部土体加固能控制上部隧道沉降变形,但加固对新建隧道及其周边土体变形影响很小;因上部隧道在平面上为曲线型,盾构掘进方向对上部隧道有一定的影响,对新建隧道管片及周边土体变形影响较小;采用注浆加固后,上部隧道沉降变形得到了较好地控制,最大可降低10%的沉降,同时可根据具体控制要求,选择合适的加固强度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号