首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
半拓扑空间(Ⅱ)   总被引:2,自引:0,他引:2  
§2 连续映象 1.一般理论定义2.1 设X和Y是(V)空间,f:X→Y是从X到Y中的映象,a∈X、如果对f(a)在Y中的每个邻域U,a在X中有邻域V使f(V)(?)U,则称f在a点连续、如果f在X中各点都连续,则称f是X上的连续映象[2,p.24]。关于(V)空间中的连续映象,我们有定理2.2 设X和Y是(V)空间,则为使映象f:X→Y连续,必须且只须下列条件之一成立:  相似文献   

2.
在1979年召开的第二次全国泛函分析学术交流会上,陈文(山原)教授提出了下列定理: 设X、Y为道路连通且局部道路连通的Hausdorff拓扑空间,f:X→Y局部同胚,x_0∈X,Y_0=f(x_o)。设U为Y中道路连通且单连通开集,Y_0∈U且U满足下述予备定理中的条件(H)。则有X_o的邻域V使f:V→U同胚。 陈的结果推广了这之前的关于这个问题的结果。本文定理3推广了陈的结果,定理1和定理2给出了局部同胚成为同胚的一些条件。  相似文献   

3.
1 函数极限证明的基本思想 要证明x→x_0(或x→∞)时函数f(x)的极限是A,当ε>0后,如果我们能找到以x_0为中心的δ邻域(x_0-δ,x_0+δ)(或N>0),当x取这邻域中异于x_0的一切值(或|x|>N)时,不等式 | f(x)-A|<ε 恒能得到满足,则就证明了x→x_0(或x→∞)时,f(x)的极限是A。 问题在于怎样找到上述要求的点x_0的δ邻域(和N)? 从函数极限的精确定义中,我们知道,如果x→x_0时,f(x)的极限是A,则点x_0的δ邻域  相似文献   

4.
数学分析中康托(G.Cantor)定理的证明有多种,现讨论另一直接证明.为清楚起见,先叙述一下定义.设f(x)是区间X上的连续函数,X_0为X内一点.对ε>0,由于f(x)在X_0点连续,所以有δ=δ(ε,x_0)>0,当|x-x_0|<δ时,恒有|f(x)-f(x_0)|<ε,这里的δ是“ε和x_0的函数”.当ε>0给定后,固定点X_0换为X内的另一点时,正数δ也会发生变化的.对每个给定的点X_0,都相应地有一个δ(ε,x_0)>0,当x_0遍取X内的一切点时,便得无穷多个δ.在这无穷多个δ中,是否有一个可公用的δ(即大于零的下界)对所讨论的区间都适用?如果有的话,我们就说f(x)在X是一致连续的.因此有  相似文献   

5.
设I=[0,1],它在数直线中的相对拓扑记为,我们称乘积诱导不分明拓扑空间(I,F_(θ×θ_I)为乘积诱导不分明单位区间,记为ω[0,1]。定义1 不分明拓扑空间(X,F)叫做不分明完全正则的,当且仅当对任一不分明开集A∈F和任一点P_(x_0)~α∈A,都有一个不分明连续映像T:(X,F)→ω[0,1],使得T(x_0)=0,T[X~~υ_α(A)]={1}。这里υ_α(A)=U{U:P_(x_0)~α∈N_U~βA},N_U~β是点P_(x_0)~α的邻域胚。不难看出,当α<1时,对任何A∈F都有υ_α(A)=σ_α(A),即A的强α—截割。定理1 若不分明拓扑空间(X,F)是不分明完全正则的,则它一定是拓扑生成的,也就  相似文献   

6.
同济大学数学教研室主编的《高等数学》(第三版)是目前工科院校广泛使用的一种教材,该教材中对于函数极值是如下定义的: 设函数f(x)在区间(a,b)内有定义,x_0是(a,b)内的一个点。如果存在着点x_0的一个邻域,对于这邻域内的任何点x,除了点x_0外,f(x)f(x_0)均成立,就说f(x_0)是函数f(x)的一个极小值。  相似文献   

7.
令X为紧致度量空间,f:X→X为连续映射,U,V为X的任意非空开集,Nf(U,V)=n∈N|U∩f-(nεV)≠准ε为Syndentic集,则称f拓扑强遍历。着重探讨拓扑强遍历映射的判定。  相似文献   

8.
保持两个等价关系的夹心半群的格林关系和正则性   总被引:3,自引:2,他引:1  
设X,Y为非空集合,E,F分别为X,Y上的等价关系.称映射f:X→Y是EF-保持的,如果对任意x,y∈X,(x,y)∈E蕴涵(f(x),f(y))∈F.设T(XE,YF,θ)表示所有EF-保持的映射的集合,θ:Y→X是一个FE-保持的映射,对任意f,g∈T(XE,YF;θ),定义fog=fθg,则T(XE,YF;θ)在运算"o"下构成一个半群,称为保持等价关系EF的夹心半群,θ称为夹心映射.本文讨论了保持等价关系EF的夹心半群T(XE,YF;θ)上的格林关系以及正则元的特征.  相似文献   

9.
设X与Y是互不相交的拓扑空间,A是X的闭集,f:A→Y是连续映射(以下简称映射),以W表示空间X与Y的拓扑并X∪Y,亦即拓扑空间W中子集G为开集当且仅当G∩X以及G∩Y分别是X及Y的开集.今在W中,将A中点x与Y中点f(x)叠合得到一个W的商空间Z,它就称作籍助映射f:A→Y将X附贴到Y上的附贴空间(adjunction space);更准确些,Z也常常记作X∪_(f,A)Y.空间W至Z的商映射常记作p.易见p在Y上的限制给出了Y至Z的一个(在中)同胚映射,所以不妨把Y看作Z的(闭)子空间。此外,p的限制还给出了自空间X—A至Z—Y的同胚映  相似文献   

10.
记拓扑空间X上的n维圈集为G■(X,x■),其成员为映S~n 中点■=(1,0,…,0)(■个零分量)到X中点x_0的连续映射。特别f∈G_n(S~n,■)是S~n上以■为不动点的自连续映射.  相似文献   

11.
设X为Banach空间,X~*为X的共轭空间,以U(X),U(X~*)分别表示X、X~*的闭单位球。设x_0∈X,‖x_0‖=1,如果U(X)在x_0处有唯一的支撑超平面,则称x_0为U(X)的一个光滑点,U(X)的光滑点全体记为Sm(U(X))。由[1]知x_0为U(X)的光滑点当且仅当X的范数在x_0处是Gateaux可微的。对于一个Banach空间X,U(X)是否一定有光滑点呢?如果X是可分的,回答是肯定的。Mazur稠性定理表明,这时U(X)有光滑点并且Sm(U(X))为U(X)={x∈X;‖x‖=1}的剩余子集(residual subset)。  相似文献   

12.
一、引言设给定函数,f(z)=sum from n=0 to ∞ c_nz~n (|z|<1),其中α_n是复数。我们使用下列符号: S_n=α_0+α_1……+α_n=S_n~(0) S_n~(p)(p>-1)定义如下: sum from n=0 to ∞ S_n~(p) x~n=1/(1-x)~(p+1) sum from n=0 to ∞α_n x~n —z平面上的闭凸集(闭凸域,直线,射线,线段,点) G_ε—包含G在其内的凸区域,且G_ε的边界点与G的距离ξ≤ε。 Cesaro(齐查罗)求和:如果=S,就说级数sum from n=0 to ∞α_n用p阶Cesaro方法[(c;p)—法]可求和,共和为S,记作sum from n=0 to ∞α_n S. 条件(A):如果函数,f(z)在|z|<1解析,在闭圆|z-x_0|≤1-x。(任意x_0,0≤x_0<1)连续,则称函数,f(z)满足条件(A)。条件(B):如果函数,f(z)在圆|z-x_0|<1-x_0有界,在点z=1有放射边界值: f(1)=f(z), 则称,f(z)满足条件(B)。  相似文献   

13.
通常的分析教科书(如等)关于l′Hospital法则的证明如下: 定理1 设函数f,g在x_0的一个忘我邻域U上处处可以微分,而且,g‘(x)恒不为0;lim f(x)=lim g(x)=0;x→x_0 x→x_0(*)存在(有限或无限)。那么, 证 补充定义f(x_0)=g(x_0)=0。由Cauchy中值定理,对任意的x∈U,  相似文献   

14.
§4A.内,外定义解析集及其局部描述为 C~n 的分枝复盖周氏定理:P~n 内的复解析子集必为代数簇。此可视作如次的老结果的推广:处处半纯函数于 C∪{∞}上者为有理函数。周氏定理是连接分析与代数几何的关键之一。(4.1)定义.令∪C~n 为开集。闭子集 X∪为∪的解析子集,若对一切 x∈X,必有 x的开邻域 U′∪及一有限集的解析函数 f;,…,f_k定义于∪′上以致 X∩∪′:{y∈∪′|f_1(y)=…=f_k(y)=0}。变易的形式是:1)若 x_0∈∪为固定的点,当∪退缩为 x_0的较小的邻域时,我们得到 C~n在 x_0的解析子集之幼芽。2)若 XP~n 为闭子集以致对每一 x∈X,X 在x 的邻域由一有限集的解析函数于 x 的仿射座标而定。则 X 就叫做 P~n 的解析子集。3)X∈∪叫做解析的子流形于 x 处,若 X 在 x 的邻域由 k 个函数f_1,…,f_k 具独立微分于 x 处;则由隐函数定理 X 为(n—k)一维的复流形于 x 的邻域,4)X∪叫做既约的,如 X 不能分解为 X_1∪  相似文献   

15.
在[1]中Raul.F.Manasevich推广Lazer—Landesman—Meyer的鞍点定理成下述形式。命题1.(Manasevich) 设H是一个实Hiebert空间,X,Y是H的两个闭子空间,H=X Y,T是从H到H的一个C~n连续映射.(n≥1),假设存在两个正数m_1和m_2使: 〈T’(u)x,x〉≤-m_1||x||~2 ?x∈X,?u∈H(1) 〈T’(u)y,y〉≥m_2||y||~2 ?y∈Y,?u∈H(2) 〈T’(u)x,y〉=〈x,T’(u)y〉?u∈H,?x∈X,?y∈Y.(3)则在这些假设条件下,T是一个映满H的C~n微分同胚。  相似文献   

16.
K一致凸空间是F,Sullivan在[1]中提出的新概念,本文继[2]对这种空间的性质进行某些讨论。 X表示实的Banach空间,X~*是X的共轭空间,U(X)={x:||x||≤1,x∈X},S(X)={x:||x||=1,x∈X}。设A是X的任何子集,则spanA表示包含A的最小线性子空间。设B是X的任何凸子集,则dimB表示B的维数,且dimB=dim(span(b—B)),其中b是属于B的任一元素。定义1 [1]设X是一个实的Banach空间。如果对于任何的ε>o,存在δ=δ(ε)>o,使得当x_1,x_2,…,x_(k 1)∈S(X),且||x_1 … X_(k 1)||>(k 1)-δ时,有  相似文献   

17.
复合函数求导的链武法则是:设函数 u=(?)(x)在点 x_0处可导,y=f(u)在点 u_0(u_0=(?)(x_0))可导,则复合函数 f_0(?)(x)在点 x_0可导,且(f_0(?))′(x_0)=f′(u_0)(?)′(x_0)。对于这个法则,我们给出一个新的证明。为此先引入两个引理。定义设 E(?)R。f在 E 上有定义,x_0。∈(?)((?)是 E 的闭包),如果存在常数 l,对于任给ε>0,存在δ>0,当x∈(x_0-δ,x_0+δ)∩E-{x_0}时,恒有 f(x)∈(l-ε,l+ε),则称 f 在x_0关于 E 有极限 l。记作 l=(?)f(x)。  相似文献   

18.
设β为线性模型Y=Xβ+e的LSE,f为-p元函数,本文有如下结果: 若β∈{β:||β-β_0||<ε},??(t=1,…,p)满足Lipschitz条件,E|e_1|~(2+δ)<∞,δ>0;X_t为一有界点列,则有??(Q-Q_0)→N(0,σ~2f'(β_0)~rΣ~(-1)f'(β_0))其中,σ~2=Ee_1~2,Q_0=f(β_0) Q为f(β)的刀切估计.  相似文献   

19.
偶映射定理     
受奇映射定理的启发,本文证明了连续偶映射的Brouwer度为偶数,即偶映射定理.(H)设D(?)R~n是有界对称含0的开集,f:D→R~n是连续偶映射(f(x)=f(-X),(?)X∈D)使O(?)f((?)D)有如下主要结果:1~0如假设(H)满足,则deg(f,D,0)是偶数.2~0如假设(H)满足,R~n的维数n为奇数且f(x)+(λ-1)x≠0,(?)x∈D和λ>1,则f在(?)D上必有零点.3~0如假设(H)满足但R~n的维数n为奇数,则存在y∈(?)D和λ>0(或λ<0)使f(y)=λy.我们进一步按上述内容对全偶连续映时进行了讨论.映射f:D→R~n是全偶的,只要f((-1)~(a1)x_1,…(-1)~(an)x_n)=f(x_1,…x_n),(?)(a_1,…a_n)∈δ_n(0,1),这里δ_n(0,1)={(a_1,…,a_n)|a_i=0或1,(?)i∈{1,2,…,n}}.  相似文献   

20.
下面先给出 BCK-代数中的几个定义   定义 1设〈 X;*, 0〉是一个 BCK-代数, X的一个非空子集 A被称为一个理想,如果它满足   (1)0∈ A  (2)x∈ A, y* x∈ A, y∈ A(以后表示可推出 )  定义 2设和〈 Y;* 1,θ〉是两个 BCK-代数,如果存在一个映射, f∶ X→ Y,使得对于任意的 x, y∈ X,有 f(x* y)=f(x)* 1f(y),则称 f为 X到 Y的一个同态映射,且称 X和 Y是同态的,记 X~ Y  定义 3设 f是两个 BCK-代数到的一个同态,称集合 Ker(f)={x∈ X;f(x)=θ }为同态 f的核。 在 [1]中已有如下结论 …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号